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Unifying Effects of Direct and Relational Associations for Visual
Communication
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Fig. 1: In this study, participants inferred which region of colormaps (left/right) represented more of a domain concept (e.g., ocean
water). Inferences can be predicted by simulating assignment inference using a weighted combination of multiple (sometimes
competing) sources of “merit”: direct associations and relational associations (dark-is-more bias).

Abstract—People have expectations about how colors map to concepts in visualizations, and they are better at interpreting visual-
izations that match their expectations. Traditionally, studies on these expectations (inferred mappings) distinguished distinct factors
relevant for visualizations of categorical vs. continuous information. Studies on categorical information focused on direct associations
(e.g., mangos are associated with yellows) whereas studies on continuous information focused on relational associations (e.g., darker
colors map to larger quantities; dark-is-more bias). We unite these two areas within a single framework of assignment inference.
Assignment inference is the process by which people infer mappings between perceptual features and concepts represented in
encoding systems. Observers infer globally optimal assignments by maximizing the “merit,” or “goodness,” of each possible assignment.
Previous work on assignment inference focused on visualizations of categorical information. We extend this approach to visualizations
of continuous data by (a) broadening the notion of merit to include relational associations and (b) developing a method for combining
multiple (sometimes conflicting) sources of merit to predict people’s inferred mappings. We developed and tested our model on data
from experiments in which participants interpreted colormap data visualizations, representing fictitious data about environmental
concepts (sunshine, shade, wild fire, ocean water, glacial ice). We found both direct and relational associations contribute independently
to inferred mappings. These results can be used to optimize visualization design to facilitate visual communication.

Index Terms—Visual reasoning, information visualization, colormap data visualizations, visual encoding, color cognition

1 INTRODUCTION

Imagine you are interpreting a bar chart and need to infer which colors
map to which concepts represented in the chart. Now, imagine instead
interpreting a colormap data visualization1 and you need to infer which
colors map to which quantities represented in the colormap.
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1Literature on visualizing continuous data using color has inconsistent termi-
nology. In this paper, “colormap” refers to a visualization that maps gradations

Traditionally, researchers studying the role of color semantics for
visual communication have treated these cases as two distinct problems.
One involves mapping colors to different categories in categorical in-
formation [18,22,36,38,41] and the other involves mapping gradations
of color to gradations of quantity in continuous data [8, 21, 35, 43]. In
both cases, a key goal is to understand people’s expectations about
the mappings between colors and concepts in visualizations (called
inferred mappings) because visualizations designed to match people’s
expectations are easier to interpret [14, 18, 22, 26, 35, 36, 38, 43, 50, 51].

Studies on visualizations of categorical information focus on direct
associations—the degree to which each color is associated with each
concept represented in the visualization. Methods have been developed
to use direct associations to optimize mappings between discrete colors
and concepts to facilitate visualization interpretability [18,22,36,38,41].

Studies on visualizations of continuous data focus on relational
associations—correspondences between relational properties of visual
features and relational properties of concepts. For example, observers
have a dark-is-more bias, inferring that darker colors map to larger
quantities [4, 8, 21, 35, 43]. This bias is relational because it depends

of colors to quantities (e.g., weather maps, neuroimaging maps, correlation ma-
trices). “Color scale” refers to the color gradient used to construct a colormap.
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on relative lightness, rather than particular colors in visualizations.
Although empirical studies of colormaps have focused on relational
associations and explicitly tried to avoid potential effects of direct
associations [21, 35, 43], direct associations likely play an important
role (see Samsel et al.’s [34] intuitive colormaps for environmental
visualizations).

In this paper, we aim to unite the study of direct and relational associ-
ations under a single framework of assignment inference. Assignment
inference is the process by which people infer mappings among vi-
sual features and concepts in visual encoding systems [38]. Previous
work on assignment inference focused on visualizations of categor-
ical information, showing that observers infer optimal assignments
(i.e., mappings) that maximize the total “goodness” of each possible
color-concept pair [22, 36, 38]. This “goodness” is called merit.

We propose that assignment inference also governs inferences about
the meanings of colors in visualizations of continuous data. In testing
this possibility, our work makes the following contributions: (1) We
broaden the notion of “merit” in assignment inference to include rela-
tional associations, and show that both relational and direct associations
influence inferred mappings for colormap visualizations. (2) We de-
velop a method for combining multiple (sometimes conflicting) sources
of merit for simulating assignment inference, and show that our method
effectively predicts inferred mappings for colormap visualizations.

2 BACKGROUND

In this section, we review previous work on color semantics in infor-
mation visualization. Following tradition, we discuss effects of direct
associations for visualizations of categorical information and relational
associations for visualizations of continuous data. We will unite these
two areas in Section 3 on our approach in the present study.

2.1 Direct associations and assignment inference
Direct associations (a.k.a. color-concept associations) are the degree to
which a color is associated with a concept. They are estimated using
various measures, including human judgments [1, 15, 24, 27, 31, 36, 38,
39, 49], image statistics [18, 19, 31, 41], and language corpora [13, 41].

Although direct associations influence inferred mappings between
colors and concepts in visualizations of categorical information [18,
22, 36, 38], direct associations and inferred mappings are not the same
thing. Cases arise in which people infer that a concept maps to a weakly
associated color, even when there are more strongly associated colors
in a visualization. This distinction is shown in Fig. 2A. The bipartite
graph (left) represents association strengths between each of two colors
(purple and white) and each of two concepts (trash (T) and paper (P)) in
an encoding system for recycling bins [38]. The thickness of the edges
connecting colors and concepts represents direct association strength
(thicker indicates stronger association). Trash is more associated with
white than with purple (thicker edges). Yet, when asked which colored
bin is for trash (Fig. 2A right), people choose purple. Why?

Evidence suggests the reason is that people approach this problem
using assignment inference, a process that considers all colors and con-
cepts in the scope of the encoding system [38]. Assignment inference
is analogous to solving an assignment problem in optimization [23]. In
Fig. 2A, the scope of the encoding system includes trash and paper,
even though paper was not relevant on this particular trial. Assign-
ment inference does not simply assign a color to the concept with the
strongest merit (for now, think of merit as direct association strength).
Instead, the process selects the combination of color-concept pairs
that maximizes total merit across all pairings. The total merit for the
T-purple/P-white assignment is greater than the alternative, T-white/P-
purple. Thus, observers infer that trash maps to purple, despite trash
being more strongly associated with white.

The ability to perform assignment inference depends on seman-
tic discriminability of the colors, given the concepts in the encoding
system. Semantic discriminability can be understood by analogy to per-
ceptual discriminability. Perceptual discriminability concerns how well
one can distinguish the appearance of different colors, whereas seman-
tic discriminability concerns how well one can distinguish the meaning
of different colors in the context of an encoding system [22, 36]. In
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Fig. 2: (A) Example of dissociation between associations and inferred
mappings from [38] (figure adapted from [22]). Bipartite graph rep-
resents associations for concepts trash (T) and paper (P) with colors
purple and white (thicker edges mean stronger associations). Observers
infer trash maps to purple even though trash is more strongly associated
with white, which is the optimal global assignment. (B) Color pairs
with high vs. low semantic discriminability for concepts watermelon
(W) and mango (M) from [36]. ∆S indicates semantic distance.

assignment inference, semantic discriminability is the degree to which
one assignment has greater merit than the alternative assignment(s). For
example, Fig. 2B shows color sets that differ in semantic discriminabil-
ity for the concepts mango (M) and watermelon (W) (data from [36]).
The red and orange set (left) has high semantic discriminability be-
cause the W-red/M-orange assignment has far greater merit than the
alternative. In contrast, the red and green set (right) has low semantic
discriminability because the W-red/M-green assignment is only slightly
better than the alternative. In their semantic discriminability theory,
Mukherjee et al. [22] specified constraints on the ability to design
semantically discriminable color palettes for a given set of concepts.

Semantic discriminability can be operationalized through a metric
called semantic distance (∆S) [22, 36], which uses merit to quantify
the degree to which any one assignment is better than alternative assign-
ment(s), while accounting for uncertainty in the system. We reproduce
the details for calculating semantic distance defined in [36] in Supple-
mentary Material Section S.2 of the present paper.

Simulating assignment inference. To simulate the outcome of as-
signment inference, it is necessary to (a) determine which assignment is
optimal according to an assignment problem [23] and (b) estimate the
probability of inferring any one assignment over all alternative assign-
ment(s), which is given by semantic distance. The combination of these
two pieces of information indicates which colors observers will map to
which concepts in assignment inference, and the probability that they
will infer that assignment. This method is effective for predicting how
people map colors to concepts for visualizations of categorical infor-
mation (e.g., recycling bin signage [38], bar charts [22, 36]), although
earlier work did not yet refer to “semantic distance” by name [38]. This
approach may also extend to inferences about properties of food and
beverage products based on coloring in package design [46].

Definitions of merit for direct associations. So far, we have treated
merit merely as direct association strength. However, there are multi-
ple methods to specify merit for direct associations, with some more
effective than others [38]. These different methods reduce to the same
outcome in encoding systems with two concepts and two colors, such
as those modeled in the present paper. Thus, we will withhold further
discussion of metrics for computing merit for direct associations here,
and we refer the interested reader to [38] and [22].

2.2 Relational associations
Relational associations are correspondences between relational prop-
erties of visual features (e.g., darkness, opacity, spatial arrangement)
and relational properties of concepts (e.g., concepts of greater or lesser
quantities). A fundamental aspect of relational associations is that they
are structure-preserving. Structure preservation arises when structural
properties between visual features correspond to structural properties
among the concepts to which they are mapped [3, 11, 14, 20, 29, 42, 50].
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If particular relations among visual features are salient and certain
relations among represented features are salient, then correspondences
between these relations can be exploited to constrain the number of
potential inferred mappings. For example, people are sensitive to the
natural progression from lighter to darker shades and to the natural
progression from smaller to larger quantities. Lightness can be mapped
to quantities in many ways (see Fig. 3A for four of many possibilities),
but only two ways are structure preserving: darker colors map to
larger quantities (dark-more assignment) or lighter colors map to larger
quantities (light-more assignment). From the perspective of structure
preservation, both assignments are equally “good.” Any assignment
that scrambles the mapping of lightness values to quantities is not
structure-preserving and thereby is less “good.”

Yet, not all structure-preserving assignments are equally good in peo-
ples’ inferred mappings. People have biases prioritizing one structure-
preserving assignment over another [8, 21, 35, 43], discussed below.

Dark-is-more bias. The dark-is-more bias is the expectation that
darker colors map to larger quantities (“more” of what is being mea-
sured) [8, 21, 35, 43]. People have a robust dark-is-more bias when in-
terpreting colormaps without legends [8,21]2 and with legends [35,43].
Studying visualizations without legends, McGranaghan [21] asked par-
ticipants to interpret maps of U.S. states colored in shades of blue, and
found that participants inferred that darker blues mapped to “more.”
McGranaghan [21] was purposefully ambiguous about the concept rep-
resented in the visualization, stating that the maps represented different
amounts of “data” to avoid effects of direct color-concept associations.
Studying visualizations with legends, Schloss et al. [35] presented
participants with colormaps representing alien animal sightings, with
the assumption that people would not have direct associations with
these novel concepts. The legend either indicated dark-more encod-
ing (greater animal sightings mapped to darker colors) or light-more
encoding (greater animal sightings mapped to lighter colors). Over-
all, participants were faster at correctly interpreting the visualizations
when legends indicated dark-more encoding, compared to light-more
encoding, providing further evidence for the dark-is-more bias.

Opaque-is-more bias. The opaque-is-more bias is the expectation
that regions appearing more opaque represent larger quantities. This
bias is only applicable when visualizations appear to vary in opac-
ity [2, 35], such as in value-by-alpha maps [33]. When the opaque-
is-more bias is activated, it aligns with the dark-is-more bias on light
backgrounds but conflicts with the dark-is-more bias on dark back-
grounds. Under such conflicts, the opaque-is-more bias can cancel
or even override the dark-is-more bias, leading observers to infer that
lighter colors map to larger quantities [2,35]. When the opaque-is-more
bias is non-applicable (i.e., a visualization does not appear to vary in
opacity), the dark-is-more bias leads observers to infer that darker col-
ors map to larger quantities on both dark and light backgrounds [2, 35].

Hotspot-is-more bias. The hotspot-is-more bias is the expectation
that spatial regions that look like hotspots represent larger quantities in
data. Hotspots emerge in datasets like fMRI, EEG, and meteorological
data, in which extreme values are neighbored by less extreme values
in concentric ring-like patterns [40]. Sibrel et al. [43] found that the
dark-is-more bias dominated over the hotspot-is-more bias unless the
hotspot was highly salient. Still, when colormaps contained hotspots
that encoded larger quantities, they were easier to interpret when the
hotspot was dark than when it was light (i.e., dark-is-more bias) [43].

3 CURRENT APPROACH

Previous work on assignment inference focused on visualizations
of categorical information, where merit depends on direct associa-
tions [22, 36, 38]. We propose that assignment inference also governs
inferred mappings for visualizations of continuous data, where merit
may depend on both direct and relational associations. As such, assign-
ment inference would operate over multiple (sometimes competing)

2Although legends are a central part of colormap visualization grammar,
Christen et al. [7] found that journal articles often leave out legends. Thus,
studying colormaps without legends is relevant for real-world visualizations,
while also providing a direct window into people’s inferred mappings.

sources of merit to determine inferred mappings.
To test this possibility, we asked participants to infer the meanings of

colors in colormaps (Fig. 1), and then predicted their responses using
simulations of assignment inference. We studied inferred mappings
for colormaps without legends, similar to [8, 21].3 We assessed the
proportion of times participants inferred the darker region mapped
to “more,” depending on the domain concept and the color scales
used to construct the colormap. In Fig. 1, the domain concept is
ocean water, and participants indicated whether there was more ocean
water on the left or right of the maps. Colormaps were displayed on
a white background and avoided hotspot spatial structure to prevent
cases in which the dark-is-more bias conflicted with the opaque-is-more
bias [35] and hotspot-is-more bias [43]. In the General Discussion, we
discuss extending our approach to handle these additional biases.

Next, we consider how direct and relational associations can serve as
sources of merit for visualizations of continuous data, and how multiple
sources combine to produce inferred mappings in assignment inference.

3.1 Direct associations as a source of merit
Representing merit for direct associations in assignment inference for
visualizations of continuous data (Fig. 1) is analogous to representing
merit for direct associations for visualizations of categorical informa-
tion (Fig. 2). In the examples in Fig. 1, merit from direct associations
for the colormaps is illustrated in the bipartite graphs under the label
“direct associations.” In the bipartite graphs, circles represent the end-
point concepts (more ocean water; +O, and less ocean water; -O) and
squares represent the endpoint colors of color scales used to create the
colormaps. Edge thickness represents association strength between
each endpoint color and concept. From the perspective of merit from
direct associations alone, assignment inference simulations for the col-
ormaps in Fig. 1 predict that more ocean water should map to darker
blues in the top row and should map to lighter blues in the bottom row.

Although the colormaps represent continuous data (more vs. less
ocean water) with a continuous gradation of color, we simplify the
assignment problem by focusing on only the the endpoint concepts
and endpoint colors. As described in Section 2.1, merit for direct
associations can be computed in multiple ways, but they simplify to the
same outcome when there are two colors and two concepts [38]. By
limiting our simulations to the two endpoint colors and two endpoint
concepts, we can think about merit for direct color-concept associations
simply as association strength. This simplification assumes that colors
between the endpoints vary monotonically in association strength with
the domain concept (e.g., ocean water in Fig. 1).

3.2 Relational associations as a source of merit
To consider how relational associations can be represented as sources of
merit in assignment inference for visualizations of continuous data, we
first turn to Figs. 3B-C. In these bipartite graphs, edges connect each
possible color (shades from white to black) to each possible concept
(numeric values from 1 to 4). As indicated in Fig. 3B, only two pos-
sible sets of edges are structure-preserving with respect to the natural
orderings of quantity and lightness: the set representing dark-more
assignment (colored black) and the set representing light-more assign-
ment (colored blue). Edges within each structure-preserving assign-
ment receive more merit than edges that are not structure-preserving
(colored gray), assuming that each set of structure-preserving edges
is bound together (e.g., all blue or all black edges) and never a mix
(e.g. some blue and some black edges). Based on structure preservation
alone, dark-more and light-more assignments have equal merit, and
thus should not be semantically discriminable.

Fig. 3C shows merit from the combination of structure preservation
and the dark-is-more bias. The dark-is-more bias places additional
merit on structure-preserving edges representing dark-more assignment
(thicker edges in Fig. 3C). With greater merit on the dark-more as-
signment than light-more assignment, these two structure preserving

3This method requires fewer within-subject trials per condition than meth-
ods assessing inferred mappings for colormaps with legends, which require
counterbalancing legend conditions (see [35, 43]).
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Fig. 3: Illustrations of structure preservation. (A) A colormap assign-
ing lightness (light to dark) to quantity (1-4), with legends specifying
structure-preserving assignments (natural progressions of lightness cor-
respond to a natural ordering of quantities) vs. not structure-preserving
assignments (assignment of lightness to quantity is scrambled). Bipar-
tite graphs can code merit in terms of (B) structure preservation and
(C) structure preservation plus the dark-is-more bias.

assignments should be semantically discriminable. Given that treat-
ing the dark-is-more bias as a source of merit also implies structure
preservation, here forward, we focus on the dark-is-more bias.

Fig. 1 shows the dark-is-more bias represented as a source of merit
for the example colormaps about ocean water. From the perspective of
merit from the dark-is-more bias alone, assignment inference simula-
tions for these colormaps predict that more ocean water should map
to darker blues in the top row (consistent with direct associations) and
darker browns in the bottom row (conflicting with direct associations).

Like for direct associations, we reduced the problem to model only
the endpoint colors and concepts. This simplification ensured that the
edges from each potential structure-preserving set (dark-more and light-
more) are not mis-matched during simulations of inferred mappings.
Our approach assumes the colors in color scales used to construct
colormaps vary monotonically in lightness, which was true in the
present study (we return to this issue in the General Discussion).

3.3 Combining direct and relational sources of merit
We propose that assignment inference for visualizations of continuous
data can be simulated using a weighted sum over multiple sources of
merit. With knowledge on how much weight to put on merit from direct
associations (WA) and the dark-is-more bias (WD), we can combine
these sources of merit (combined merit bipartite graph in Fig. 1) and
use established methods for simulating assignment inference [22,36,38]
to predict inferred mappings. In the top row, these sources of merit
are consistent, and simulating assignment inference over combined
merit predicts observers will infer that darker colors map to larger
quantities. In the bottom row, these two sources of merit are conflicting.
Depending on the relative weight given to each source, they might
cancel each other out, or one might dominate over the other. The
weights used in Fig. 1 are based on the results of Exp. 3, with greater
weight on direct associations than on the dark-is-more bias (see Exp. 3
for details).

In this study we asked whether direct and relational associations inde-
pendently contribute to merit in assignment inference for colormap data
visualizations, and if so, what is their relative contribution? Answering
these questions enabled us to create a model that predicts people’s
inferred mappings, which can be used to help design colormaps that
facilitate visual communication.

4 EXPERIMENT 1
Experiment 1 investigated whether both direct and relational color-
concept associations contribute to inferred mappings for colormaps.
We addressed this question using colormaps depicting fictitious data
about two domain concepts, shade and sunshine. We chose these
concepts because the dark-is-more bias and direct associations would

B. UW-71 colors
Shade

Not at all Very much

Continue

A. Example association trial

Fig. 4: (A) Example association rating trial. The slider indicates a
slight association for the given purple color with the concept shade. (B)
The UW-71 colors as seen during the association task instructions.

be consistent for shade and conflicting for sunshine, allowing us to test
for independent effects of each factor.

4.1 Methods
We began by collecting direct color-concept association data for the
domain concepts shade and sunshine. We then used these data to
generate colormap stimuli to assess inferred mappings. Data, code,
and color coordinates for all experiments in this paper can be found at
https://github.com/SchlossVRL/assign-infer-colormaps.

4.1.1 Measuring direct color-concept associations
In the color-concept association task, participants were presented with
a concept word at the top of the screen (sunshine or shade) and a
colored square centered below (Fig. 4A). They rated how much they
associated the given concept with the given color by moving a slider
along a scale ranging from “not at all” (−200) to “very much” (200),
and clicking “continue” to begin the next trial. Each concept was rated
for each of the UW-71 colors [22] shown in Fig. 4B (see Table S.3 in
Supplementary Material for CIELAB coordinates). The UW-71 colors
include 58 colors uniformly sampled from CIELAB space (UW-58
from [31, 36]), plus 13 additional colors sampled at a higher lightness
plane to incorporate more saturated yellows and greens [22].

Our target sample size was n = 30 and we collected data from 35
Amazon mTurk workers given we expected several participants would
be excluded for failing the attention check, described below (35 total, 3
excluded). The final sample was n = 32 (mean age = 40 years old; 11
women, 21 men; gender assessed using free-response here and in all
subsequent experiments). All participants indicated normal color vision
when asked if they had difficulty distinguishing between colors relative
to the average person and if they considered themselves colorblind.
All participants of this and all subsequent experiments gave informed
consent and the UW–Madison IRB approved the protocol.

Before beginning the task, participants were shown the domain
concept words and all 71 colors (Fig. 4B). They were asked to identify
which color they associated most and least with each concept to anchor
the endpoints of the scale [30].The experiment was blocked by concept,
with shade and sunshine presented in a random order within the first two
blocks. The 71 colors appeared in a random order within each block.
Given our plan to use association ratings from this task to generate
stimuli for the colormaps task, we sought to include associations only
from participants who made careful judgments. Thus, we included
a third, attention check block for all participants and set an a priori
exclusion criterion (see Section S.3 in the Supplementary Material).

The displays of this and all subsequent experiments were created
using jsPsych [9]. All participants completed the experiments on their
own devices so the color coordinates were calculated using standard
assumptions about RGB displays. Thus, as is typical in color exper-
iments in visualization, which aim to be robust to variations across
displays [12, 22, 47, 48], the precise colors each participant saw varied
with the specifications of their monitors. This experiment took approxi-
mately 30 min. and participants were compensated $3.63. The mean
color-concept associations for sunshine and shade are shown in Fig.
S.4 of the Supplementary Material.
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Fig. 5: Color scales and corresponding colormaps in Exp. 1.

4.1.2 Generating colormaps

To generate the colormaps for this experiment, we (1) specified eight
pairs of endpoint colors, (2) interpolated between the eight endpoint
colors to create color scales, and then (3) applied the colorscales to 10
underlying datasets to create colormap data visualizations (Fig. 5).

(1) We selected endpoint colors such that one color was lighter
(L) and the other was darker (D). For four endpoint pairs, association
difference was high—sunshine was far more associated with the light
than the dark endpoint, and shade was far more associated with the dark
than the light endpoint. For four other pairs, association difference was
low, which occurred when both colors were either weakly or moderately
associated with the domain concept.4 Within each level of association
difference, two endpoint pairs had a lightness difference of L∗ = 38,
and two had a difference of L∗ = 50. We tested multiple color pairs
for each condition to ensure our results were not specific to any one
color pair. We checked if the colors interpolated between the endpoints
varied (approximately) monotonically in direct association strength
for both sunshine and shade (i.e., the domain concept was not more
associated with the intermediate colors than with either endpoint)5. See
Supplementary Material Section S.4 and Fig. S.5 for details.

(2) Using these endpoint colors, we created eight color scales by
linearly interpolating eight steps between the light and dark endpoints
(interpolation computed in CIELAB space). The resulting color scales
had 10 steps, as in the stimuli from [35].

(3) Finally, we applied each of the eight color scales to 10 underlying
datasets, producing 80 colormap data visualizations. The underlying
datasets produced colormaps appearing as an 8× 8 grid, where one
side was biased to be lighter and the other side was biased to be darker.
Within the 10 underlying datasets, half produced colormaps in which
the left side was darker than the right side (as in Fig. 5), and the other
half produced colormaps in which the right side was darker (as in Fig.
1). A full set of 10 colormaps from one color scale are shown in Fig.
S.8 in the Supplementary Material.

The underlying datasets we used were previously used to generate
colormaps in [35]. The data ranged from 0-1, with values sampled from
eight discrete points along an arctangent curve with added noise. The
eight points corresponded to the eight columns of the colormaps. The
samples at each point were used to assign values to the rows within
each column of the colormap (see Supplementary Material Section
S.1 for further details). One endpoint of the color scale was assigned
a data value of 0 and the other endpoint a data value of 1, such that
the color scales corresponded to the full range of the underlying data.
Given that the data were evenly sampled along the arctangent curve, the
data represented in the colormaps evenly span the full data range. This
method of generating stimuli mitigates concerns about the dynamic
range of data variability being hidden in the data visualization [10, 52].

4Overall, mean association ratings increased with lightness for sunshine
(CIELAB L*) (r(69) = .71, p < .001) and decreased with L* for shade (r(69) =
−.79, p< .001), but some light colors were moderately associated with sunshine,
and some dark colors were moderately associated with shade. These properties
enabled us to generate colormaps that varied in association difference.

5Two color scales for shade did not meet our statistical criterion, due to a
coding error treating hue angle as radians instead of degrees. However, our
statistical criterion is a heuristic, and visual inspection suggested that the inter-
mediate colors still varied monotonically between the endpoints (Supplementary
Material Fig. S.6A), so we kept data for these color scales in the analysis.

4.1.3 Assessing inferred mappings for colormaps
In the colormaps task, participants were presented with colormaps
along with a domain concept (sunshine or shade). They were told
that the colormaps represented amounts of sunshine (or shade) from
various counties in a state. In some counties, there was more sunshine
(shade) on the left side of the county; in other counties, there was more
sunshine (shade) on the right side. Their task was to indicate whether
there was more sunshine (shade) on the left/right of the map by pressing
the left/right key on their keyboard.

Domain concept and color scale varied between-subjects, and partic-
ipants were randomly assigned to one of 16 groups (8 color scales × 2
domain concepts). Each participant judged all 10 colormaps for their
assigned domain concept and color scale, one at a time in a random
order. Trials were separated by a 500-ms inter-trial interval. The col-
ormaps (approx. 4cm × 4cm) appeared on a white square (approx. 9cm
× 9cm) in the center of a medium gray screen (size estimates using a
15.6in, 1920 × 1080 pixel monitor). Below each half of the colormap
was a horizontal line labeled “Left”/“Right” (Fig. 1).

Our target sample size was n = 192, n = 12 per group (sample size
based on a power analysis reported in Supplementary Material Section
S.6). The final sample was 187 mTurk workers (mean age = 38.9 years
old, 105 women, 82 men), after excluding n = 3 for atypical color
vision and n = 2 for not completing the experiment. The groups ranged
from 9− 13 participants due to how the experiment code automated
assignments to conditions while managing exclusions. The experiment
took approx. 5 min. and participants were compensated with $0.60.
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Fig. 6: (A) Predicted patterns of results in Exp. 1 if inferred map-
pings are influenced by only the dark-is more bias (left), only direct
associations (center), or both (right). (B) Results of Exp. 1, showing
the mean proportion of times the darker side was selected for maps
about sunshine (circles) and shade (triangles) as a function of signed
association difference. Mark colors represent endpoint colors in the
color scales and error bars represent standard errors of the means.

4.2 Results and Discussion
Fig. 6A shows potential patterns of inferred mappings if there was an
effect only of direct associations, only of the dark-is-more bias, or both.
The y-axis represents the proportion of times the darker side would be
chosen over all trials, as a function of signed association difference. Pos-
itive/negative association differences indicate the darker/lighter color is
more associated with the domain concept, respectively. Direct associa-
tions only predicts the probability of choosing the darker side would
increase monotonically as the darker side becomes more associated with
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the domain concept. Dark-is-more only predicts participants would
always choose the darker side, regardless of association difference. If
both have an effect, then participants would choose the darker side
when the two biases are consistent (positive association differences) but
less likely to choose the darker side as the lighter side becomes more
associated with the domain concept (negative association differences).

Fig. 6B shows the mean proportion of times the darker side was
chosen, averaged over the 10 repetitions within each participant, and
then averaged over participants. The pattern of responses resembles the
predicted pattern if both the dark-is-more bias and direct associations
influenced inferred mappings. Participants almost always chose the
darker side for shade (association differences greater than zero), and
their likelihood of choosing the darker side decreased as the lighter side
became more associated with sunshine.

To test for independent effects of each potential source of merit,
we used a mixed-effect logistic regression model. Although we plot
the data in terms of the proportion of times participants chose the
darker side (Fig. 6B), this way of coding the data poses a problem for
including the dark-is-more bias as a predictor in a regression model,
given that there is no variability in the predictor (it predicts a response
of ‘1’ on every trial). Thus, we conducted a model to predict whether
participants chose the left side on each trial (1 = left, 0 = right), from a
predictor coding whether the left side was darker (1 = left darker, −1 =
right darker), and a predictor coding which side was more associated,
and by how much (scaled to range from −1 to 1; x-axis values in
Fig. 6B). Conducting models with respect to the left side is a standard
approach in psychophysics research, and is valid as long as the stimuli
are left/right balanced, as in the present stimulus set (see Section 4.1.2).

Participants were more likely to select the left side if it was more
strongly associated with the domain concept than the right side (B =
4.51,SE = 0.21;z = 21.22, p < .001) and if it was dark than light (B =
1.33,SE = 0.09;z = 15.46, p < .001) (dark-is-more bias). Thus, both
direct and relational associations influenced inferred mappings. See
Section S.7 in Supplementary Material for an additional analysis that
includes concept as a factor in the model.

Summary. Exp. 1 showed that direct associations and the dark-
is-more bias contribute independently to people’s inferred mappings.
When these two factors conflict (the domain concept is more associated
with the light endpoint than the dark endpoint) and the direct association
difference is large, direct associations override the dark-is-more bias.

5 EXPERIMENT 2
Given evidence that direct associations can override the dark-is-more
bias when they conflict and direct associations are strong, we conducted
Exp. 2 to test how much association difference was needed for direct
associations to fully override the dark-is-more bias. The results led us
to study effects of semantic distance for predicting inferred mappings.

5.1 Methods
The methods were the same as Exp. 1, except for two changes. First, we
only tested sunshine as the domain concept in order to focus on cases
where direct associations and the dark-is-more bias conflict. Second, we
included eight new color scales of intermediate association difference,
in addition to the original eight from Exp. 1 (16 color scales) (Fig. 7).

For the new color scales, we selected endpoint color pairs using the
association data from Exp. 1 with the same selection criteria (Sup-
plementary Material Section S.4). Two of the new color scales did
not meet our statistical criterion for monotonicity due to a coding er-
ror treating hue angle as radians instead of degrees (Supplementary
Material Fig. S.6B), and visual inspection showed that intermediate
colors were more associated with sunshine than the endpoints. Thus,
we excluded data from these two color scales from analysis.

We focused on association difference and allowed association
strength to vary (e.g., the same value of association difference could be
achieved if sunshine was moderately associated with the light endpoint
and weakly associated with the dark endpoint, or strongly associated
with the light endpoint and moderately associated with the dark end-
point). As in Exp. 1, each participant judged 10 colormaps constructed
from one of the 16 color scales (between-subjects).

Exp.1 & 2

Lighter more associated with domain concept

Exp. 2 only Exp.1 & 2

Dark

Light

Fig. 7: Color scales used in Exp. 2. From right to left, sunshine is
increasingly more associated with the light endpoint of the color scale.
The four leftmost and four rightmost color scales were used in Exp. 1.

Our target sample size was n = 640 (n = 40 per condition) based
on a power analysis (see Supplementary Material Section S.6). We
collected data until each condition reached at least 40 participants after
excluding those with atypical color vision (696 Amazon mTurk workers
in total, 41 excluded). We assessed color vision using the two self-
report questions in Exp. 1, plus responses to six digital Ishihara plates.
Participants were excluded if they answered yes to either question
and/or answered incorrectly for more than one of the six plates. The
final sample included 655 participants (mean age = 38.6 years old;
294 women, 358 men, 2 non-binary, 1 no report). The groups ranged
from 40−44 participants due to how the experiment code automated
assignments to conditions while managing exclusions. The experiment
took approximately 5 min. and participants were compensated $0.60.

5.2 Results and Discussion
Fig. 8A shows the mean proportion of times participants selected the
darker side for colormaps generated from each color scale (averaged
over the 10 colormaps judged by each participant, and then averaged
over participants). As in Exp. 1, direct associations were more likely
to override the dark-is-more bias as association difference increased
(r(12) = .85, p < .001). But, once association difference reached about
−.55, participants almost always inferred that the lighter side of the
colormaps mapped to more sunshine. Direct associations fully overrode
the dark-is-more bias, so further increasing association difference could
not further influence inferred mappings (floor effect). This observation
led us to ask, why would inferred mappings level off at around −.55?

One possibility is that participants approached this task using as-
signment inference, comparing each possible assignment (dark-more or
light-more), and inferring the assignment with greater merit. Once the
merit of one assignment is sufficiently greater than the alternative, the
colors reach maximal semantic discriminability. Then, further increas-
ing association difference has no further effect on assignment inference.
This limit may have been reached at an association difference of around
−.55. If so, then the plateauing function in Fig. 8A may become
linear when we replace the x-axis (signed association difference) with
simulations of assignment inference (Section 2.1).

To simulate assignment inference for each color scale, we first calcu-
lated semantic distance for each pair of endpoint colors (using equation
1 defined in [36] and reproduced in Supplementary Material Section S.2
of this paper). We then determined the optimal assignment (i.e., which
assignment had greater merit), and coded the outcome as dark-more =
+1 and light-more = −1. Last, we multiplied this coding by semantic
distance to compute signed semantic distance, which gave positive val-
ues to the probability of inferring dark-more assignments and negative
values to the probability of inferring light-more assignments.

Computing signed semantic distance required specifying merit based
on direct associations between each endpoint color and each endpoint
concept (“no sunshine” vs. “a lot of sunshine”), as in Fig. 1. From Exp.
1, we had association data for domain concept “sunshine,” but not the
endpoint concepts. Thus, we collected data from additional participants
(n = 31), who rated the association strength between each endpoint
color and endpoint concepts “no sunshine” and “a lot of sunshine” (see
Supplementary Material Section S.5). We used the mean ratings as
merit to compute signed semantic distance.

As shown in Fig. 8B, inferred mappings were predicted by simula-
tions of assignment inference: signed semantic distance was strongly
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Fig. 8: Mean proportion of times the darker side was selected for each
color scale, plotted as a function of (A) signed association difference,
and (B) signed semantic distance using direct associations as merit.
Mark colors indicate endpoint colors. Error bars indicate standard error.

correlated with the proportion of times participants chose the darker side
(r(12) = .97, p < .001). This correlation was stronger than the correla-
tion for signed association difference reported above (z= 1.96, p= .05).
The trail of points that plateaued in Fig. 8A now compress onto signed
semantic distance values near −1 in Fig. 8B.

From this strong linear relation, one may suppose that only merit
from direct associations is needed to simulate inferred mappings for
colormap visualizations. But, Exp. 2 only included conditions in which
direct associations and the dark-is-more bias conflicted, and Exp. 1 sug-
gested that when they were consistent, the dark-is-more bias dominated
regardless of association strength difference. To understand the relative
contribution of these two potential sources of merit in assignment infer-
ence, it is necessary to model data sampled from multiple points along
the full range of signed semantic distance (see Exp. 3).

Summary. As in Exp. 1, Exp. 2 showed that direct associations
override the dark-is-more bias when the association difference between
the light and dark colors was sufficiently large. The pattern of inferred
mappings was strongly predicted by simulations of assignment infer-
ence using merit from direct associations (signed semantic distance).

6 EXPERIMENT 3
In Exp. 3, we developed and tested a new method to combine multi-
ple (sometimes conflicting) sources of merit to simulate assignment
inference (Fig. 1). The experimental task was the same as Exps. 1-
2, but we tested three new domain concepts (ocean water, wild fire,
and glacial ice), and sampled 21 points along the full range of direct
association-based signed semantic distance for each concept. Our goals
were: (1) determine the optimal weighting on direct associations (WA)
relative to the dark-is-more bias (WD) when computing combined merit,
and (2) test whether simulations of assignment inference using the
optimal combined merit predicted people’s inferred mappings better
than simulations using each source of merit alone.

6.1 Methods
We first collected direct association ratings for the domain concepts
and then used the mean ratings to generate colormaps to assess inferred
mappings. We also collected additional data to quantify merit for direct
associations and the dark-is-more bias.

6.1.1 Measuring direct color-concept associations

We collected direct association ratings for five domain concepts relevant
to environmental data: wild fire, ocean water, glacial ice, ground soil,
and tree foliage (inspired by [34]), using the same methods as in Exp.
1. The data are shown in Supplementary Material Fig. S.7.

The target sample was n = 35 to match Exp. 1, and we collected data
in batches until reaching this target after excluding those with atypical
color vision (n = 15) and who failed the attention check (n = 17);
70 Amazon mTurk workers total. We shortened the attention check
block but used the same a priori exclusion criterion (see Supplementary
Material Section S.3). Our final sample was n = 38 (mean age = 42.8

Wild
fire

Glacial
 ice

Ocean
 water

Darker more associated
 with domain concept

Lighter more associated
 with domain concept

Conflicting Consistent

Fig. 9: Color scales used to create colormaps in Exp. 3. Rightward
of center, the domain concept increases in direct association strength
with the darker endpoint (consistent direct and relational associations).
Leftward of center, the domain concept becomes increasingly more
associated with lighter (conflicting direct and relational associations).

years old, 18 women, 20 men). The experiment took approximately 60
min. and participants were compensated $7.25.

6.1.2 Generating colormaps and computing merit

Based on the direct association data, we created colormaps for three
concepts: wild fire, ocean water, and glacial ice. These domain concepts
enabled spanning the full range of signed semantic distances within
each concept. We generated colormaps using the methods in Exp. 1
(Fig. 5) and Supplementary Material Section S.4. For each domain
concept, we chose 21 pairs of endpoint colors that spanned the full
range of association differences from strongly negative (light color was
more associated with the domain concept) to strongly positive (dark
color was more associated with the domain concept). Fig. 9 shows
the resulting 21 color scales for each domain concept. All color scales
satisfied the criterion for monotonicity. As in Exps. 1 and 2, each color
scale was applied to 10 underlying datasets to produce 10 colormaps
per color scale, with darker side left/right balanced (Fig. S.8).

After selecting the color pairs, we collected additional data to esti-
mate merit for each endpoint color paired with each endpoint concept,
with respect to direct associations and the dark-is-more bias (Fig. 1).

Merit for direct associations. A new set of 30 participants rated the
association strength between each endpoint of each domain concept
(e.g., “a lot of ocean water,” “no ocean water”) and each corresponding
endpoint color (details in Supplementary Material Section S.5 ). As
in Exp. 2, we used these associations to estimate merit derived from
direct associations for each color-concept endpoint pairing (Fig. 1).

Merit for the dark-is-more bias. So far, we have discussed the dark-
is-more bias as binary—dark-more assignments have greater merit than
light-more assignments. However, the dark-is-more bias can also be
considered continuous—the degree to which dark-more assignments
have greater merit depends on the degree to which one endpoint appears
clearly darker than the other endpoint. One might consider quantifying
merit of the dark-is-more bias using lightness (L*) difference between
the two endpoint colors of the color scale that varied monotonically in
lightness. However, we reasoned that the dark-is-more bias would be
activated if one side appeared clearly darker than the other, and adding
additional lightness difference may not increase activation of the bias.

Thus, we used an empirical approach to quantify merit for the dark-
is-more bias. For each endpoint color pair, volunteers with expertise in
color perception (n = 4) rated the degree to which one color was clearly
darker than the other color (referred to as darkness difference ratings).
They judged each pair twice (left/right balanced), and made their ratings
on continuous slider scale from “left color is clearly darker” to “right
color is clearly darker.” The middle was labeled “equal darkness” (see
Supplementary Material Section S.5 for details). For each color scale,
we coded dark-more edges to have merit = 1 and light-more edges
to have merit = 0, and then multiplied these values by the darkness
difference ratings. As a result, differences in total merit of dark-more
vs. light-more assignments scaled with the degree to which it was
obvious that the dark endpoint appeared darker than the light endpoint.
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6.1.3 Colormap interpretation task
This task was the same as in Exps. 1 and 2, except the domain concepts
were wild fire, ocean water, and glacial ice and there were 21 color
scales per domain concept (3 domain concepts × 21 color scales =
63 groups of participants). Participant judged 10 colormaps for their
assigned domain concept and color scale. They were told that the col-
ormaps represented data about [domain concept] in different counties.
Their task was to indicate whether there was more [domain concept]
on the left/right side of the county (Fig. 1).

The target sample size was n = 1260 (n = 20 per condition) based
on a power analysis (see Supplementary Material Section S.6). We
collected data in batches until each condition had at least n = 20 after
excluding those with atypical color vision as assessed in Exp. 2 (1391
Amazon mTurk workers total, 107 excluded). The final sample was
n = 1284 (mean age = 40.3 years old, 1 no reported age; 672 women,
598 men, 9 non-binary, 5 no reported gender). The groups ranged
from 20−22 participants due to how the experiment code automated
assignments to conditions while managing exclusions. The experiment
took approximately 5 min. and participants were compensated $0.60.

6.2 Results and Discussion
In the following analyses, we determined the optimal relative weighting
on direct and relational associations, and then assessed whether as-
signment inference simulations using the optimal weighting predicted
inferred mappings better than simulations using each source of merit
alone. We split participants into a training set to determine the optimal
weighting, and a test set to compare the optimal weighting with each
source of merit alone. Each set had 10−12 participants per color scale
for each domain concept. We simulated assignment inference with
varying relative weight on each source of merit as follows:

(1) Computing combined merit. First, we specified merit of each
color-concept pairing within each source of merit (Section 6.1.2). Then,
we calculated combined merit by computing the weighted sum over
bipartite graphs for each source of merit (Fig. 1). We used each combi-
nation of weights on direct associations (WA) and the dark-is-more bias
(WD) in increments of .05, such that their sum was 1. Each weight was
a multiplicative factor on each edge of the respective bipartite graphs.
For instance, a weight pairing of (1,0) placed all the weight on direct
associations, (0,1) placed all the weight on the dark-is-more bias, and
(.5, .5) placed equal weight on both sources of merit.

(2) Computing signed semantic distance. We computed signed se-
mantic distance over combined merit for each weight pairing, following
the procedure in Exp. 2. First, we computed semantic distance between
the endpoint colors for each domain concept. Next, we determined
the optimal assignment (which assignment had greater overall merit),
coded as +1 for dark-more and −1 for light-more. Last, we multiplied
this coding by semantic distance to obtain signed semantic distance.

To determine the optimal weighting, we used mean squared error
(MSE) to compare assignment inference simulations with human judg-
ments. For each of the 21 color scales for each of the three domain
concepts, we computed MSE between signed semantic distance and the
mean probability that participants in the training set chose the darker
side of the colormaps. When computing MSE, we scaled the proportion
chosen data to range from -1 to 1, corresponding with the scale of
signed semantic distance. Fig. 10A shows MSEs averaged over the 21
color scales for each domain concept, plotted as a function of weight
pairs, along with the average over domain concepts. On average, the
best performing weight pair yielding the lowest MSE had a weight of
WA = .7 on direct associations and WD = .3 on the dark-is-more bias.

Using data from the held out testing set, we evaluated whether this
optimal weight pair was better for predicting assignment inference
than each source of merit alone. For each color scale for each domain
concept, we computed MSE between mean responses (scaled to range
from −1 to 1) and signed semantic distance with the optimal weight-
ing identified from the training set (.7, .3), with all weight on direct
associations (1,0), and with all weight on the dark-is-more bias (0,1)
(Fig. 10B). To test effects of relative weighting, we used a linear mixed
effects model predicting MSE for each color scale, with fixed effects
for relative weighting, domain concept, and their interaction (using
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Fig. 10: Mean squared error (MSE) predicting inferred mappings from
assignment simulations with varying weights on dark-is-more bias (WD)
and direct associations (WA) for the (A) training set and (B) testing
set. MSEs are shown separately for colormaps representing ocean
water (blue diamonds), glacial ice (gray squares), and wildfire (yellow
triangles), plus the average of all three concepts (black circles). Error
bars represent standard error of the means. The gray bar indicates the
best pair, determined from the training set.

Helmert contrasts). The model also included a by-color scale random
intercept and random slope for relative weighting. Here we focus on
the main effect of relative weighting (F(2,53.45) = 9.18, p < .001),
and we report on further details of this model in Supplementary Ma-
terial Section S.7. Planned independent samples t-tests indicated that
the optimal weight pair fit inferred mappings better than direct as-
sociations alone (t(124) = −2.55, p = .01) and dark-is-more alone
(t(124) =−3.53, p = .001).

Fig. 11 shows the relation between participant responses and sim-
ulations of assignment inference using the optimal weight pairings
for each color scale. Points would fall along the diagonal line if the
simulations perfectly predicted inferred mappings. Signed seman-
tic distance was significantly correlated with inferred mappings for
all three domain concepts, but to varying degrees: strong correlation
for wild fire (r = .83, p < .001), moderately strong for ocean water
(r = .72, p < .001), and moderate for glacial ice (r = .55, p = .01). Pre-
liminary exploration suggests this weaker relation for glacial ice might
be due to some colormaps appearing to vary in opacity, activating the
opaque-is-more bias. The opaque-is-more bias aligns with the dark-is-
more bias on light backgrounds (as used here), and the two relational
associations may have combined to jointly override effects of direct
associations. Our study was not designed to test the opaque-is-more
bias, so future work is needed to study these effects more directly.6
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Fig. 11: Mean proportion of times the darker side was selected for the
held-out testing set for each color scale as a function signed semantic
distance using the optimal weight pair. Mark colors indicate color scale
endpoint colors, and error bars indicate standard error.

Supplementary Material Section S.7 includes an additional analysis
showing independent effects of direct and relational associations on

6This weaker correlation for glacial ice is not likely due to concept glacial
ice, but rather the colormaps appearing to vary in opacity happened to be in the
glacial ice condition. The applicability of the opaque-is-more bias depends on
the combination of background and colors of the color scale [35], and would be
applicable for these colormaps if they represented any other domain concept.
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inferred mappings (as in Exp. 1). It also includes plots of inferred
mappings as a function of association difference and semantic distance
from direct associations (Fig. S.9), analogous to Fig. 8 in Exp. 2. The
strong plateau for sunshine colormaps in Exp. 2 was less apparent in
Exp. 3, and we consider possible explanations in Section S.7.2.

Summary. Exp. 3 showed that inferred mappings for colormaps
were well-predicted using a simulation of assignment inference with
combined merit. The optimal combined weighting resulted in predic-
tions with less error than predictions simulated with weight on direct
associations or the dark-is-more bias alone.

7 GENERAL DISCUSSION

A central problem in visual communication is understanding how peo-
ple infer meaning from visual features. By anticipating people’s expec-
tations about how visual features should map onto concepts, designers
can create visualizations that align with those expectations, thereby
facilitating communication [14, 18, 22, 26, 35, 36, 38, 43, 50, 51].

We approached this problem by bridging work on inferred map-
pings for visualizations of categorical information [18, 22, 36, 38, 41]
and visualizations of continuous data [8, 21, 35, 43] to understand both
within a single framework of assignment inference. Doing so required
broadening the notion of merit in assignment inference to include not
only direct associations as in [22,36,38], but also relational associations
(e.g., dark-is-more bias). Exp. 1 showed that direct and relational asso-
ciations contribute independently to inferred mappings for colormaps.
Exp. 2 showed that inferred mappings for colormaps were predicted
by simulations of assignment inference (signed semantic distance) us-
ing merit from direct associations. Exp. 3 showed that simulating
assignment inference using a weighted sum over merit from direct and
relational associations was better at predicting inferred mappings than
simulations using each source of merit alone.

This study is an initial step towards comprehensively modeling the
effects of multiple sources of merit in assignment inference. Here, we
began with direct associations and one type of relational association,
the dark-is-more bias. In future work, we will extend our approach to
include additional sources of merit, including the opaque-is-more bias
and hotspot-is-more bias. To quantify merit for the opaque-is-more
bias, it will be necessary to estimate the degree to which colors in the
colormap appear to vary in opacity depending on the background color
(see [35]), and ensure that this source of merit falls out of the equation
when colormaps do not appear to vary in opacity. To quantify merit for
the hotspot-is-more bias, it will be necessary to quantify the degree to
which hotspots are salient in the colormap, and again ensure that this
source of merit falls out of the equation when colormaps do not appear
to have hotspots. Our approach for estimating inferred mappings not
only has potential to accommodate known sources of merit, but can
also scale as additional sources of merit are discovered.

We also expect our approach to extend to abstract concepts. Ev-
idence suggests that sets of abstract concepts previously considered
“non-colorable” (e.g., sleeping, driving, safety, comfort) can be mean-
ingfully encoded using color as long as their association distributions
are sufficiently different from one another (semantic discriminability
theory [22]). In the present framework, as long as the colors in the color
scale vary in association strength with the domain concept, then merit
from direct associations will influence combined merit with the dark-is-
more bias. If the associations do not vary in association strength (low
semantic distance), then merit from direct associations will have little
effect on combined merit, and the dark-is-more bias should dominate
inferred mappings. These patterns should hold regardless of whether
the concepts are abstract/concrete. If a concept has no systematic color-
concept associations, regardless of whether it is abstract/concrete, then
it will not be possible to create a color scale with large direct association
difference, so the dark-is-more bias (and any other sources of merit)
would dominate inferred mappings.

Overall, our findings can be translated to incorporate color seman-
tics into tools that generate colors for information visualizations (e.g.,
Colorgorical [12], Color Crafter [45], and CCC-Tool [25]). These tools
already allow designers to balance different factors, such as perceptual
discriminability and aesthetics. With a comprehensive model of assign-

ment inference combining multiple sources of merit, it will be possible
to incorporate semantic discriminability into algorithms that optimize
color selection for visualization design.

Limitations. This study has limitations for future work to address.
Linearly interpolated color scales. We used color scales that were

linearly interpolated between two endpoints in CIELAB space, which
supported the goals of this study. Interpolated color scales allowed
us to compare merit of dark-more vs. light-more assignments using
direct color-concept associations from only the endpoint colors. Using
only the endpoints was possible because the intermediate colors varied
approximately monotonically in association strength between the end-
point colors (see Supplementary Material Section S.4). Monotonicity
would be violated if the domain concept was more/less associated with
intermediate colors of a color scale than the endpoints (e.g., using a
color scale for sunshine that interpolated between a red and yellowish-
green, resulting in more strongly associated yellows in the middle).

Monotonicity would also likely be violated in industry standard
color scales that spiral through color space [5, 16, 45]. Yet, Smart et
al. [45] showed that such color scales that spiral produce colormaps
that are more interpretable and aesthetically preferable than linear
colormaps like the ones in the present study. Indeed, many criteria
determine whether color scales (also referred to as ramps) are effective
for visualizing continuous data [6, 25, 32, 34, 44, 45, 53] and our color
scales were not designed to meet those criteria. Thus, the color scales
in the present study are not meant to be used for visualizations of real
data. To apply our modeling approach to more complex color scales, it
will be necessary to quantify merit for color-concept pairings sampled
in multiple steps between the two endpoints, and use a method for
computing the optimal assignment that accounts for many colors and
many concepts.

Sequential color scales. The present work, and most previous work
on inferred mapping for colormaps [21, 35, 43], has focused on se-
quential color scales, where encoded data ranged from small to large.
Questions remain concerning how this work extends to diverging scales,
where encoded data has a neutral point. The dark-is-more and opaque-
is-more biases imply that more extreme data (furthest from the neutral
point) should map to darker, more opaque regions, respectively. Future
work is needed to test these hypotheses, and to investigate people’s
expectations about which colors represent data values above/below
the neutral point. Future work is also needed to determine whether
the relative weightings on sources of merit established in Exp. 3 for
sequential color scales generalize to diverging color scales.

Task type. Our study and much of the previous studies on inferred
mappings for colormaps [21, 35, 43] used tasks that asked participants
to interpret where “more” was represented in a colormap. However,
people use colormap data visualizations for a wide variety of other tasks,
such as those studied by Padilla et al. [28]: finding a specific value
of a concept, comparing values across regions, and averaging values
across regions. Future research is needed to test whether the present
framework modeling combined merit to estimate inferred mappings
predicts performance in these other kinds of tasks.

Conclusion. This work builds a new bridge for understanding how
direct and relational associations combine to influence inferences about
the meanings of colors in visualizations. We have laid the groundwork
to develop a more comprehensive model of assignment inference that
accounts for additional sources of merit that we know of, and can
scale to accommodate new sources of merit as they are discovered.
Our findings can be translated directly to design visualizations that
align with people’s expectations about the meanings of colors, thereby
making visualizations that are easy to interpret.
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