
Gazing at the Interface
Kevin Lande

Department of Philosophy / Centre for Vision Research
York University

lande@yorku.ca / www.kevinlande.com

mailto:lande@yorku.ca
http://www.kevinlande.com/


Computational Theory of Mind
Mental capacities for perceiving, 
thinking, remembering, planning, and 
acting constitutively depend on 
mental representations that
1. Have representational or 

informational content
2. Encode that content in a 

structure/code/format
3. Enter into structure-sensitive, 

content-respecting causal 
relations.



A Plurality of Codes

Psychologists posit different 
formats for different capacities.

Different formats: 
Normally, if Format A ≠ Format B, 
then representations in A don’t 
function to compose with 
representations in B.

274 D. MaI-r and H. K. Nishihara 

difficult to derive since a unique coordinate system has to be defined for each 
object and that coordinate system has to be identified from the image before the 
description is constructed. 

DESIGN D2. Primitives 
The primitives of a representation are the most elementary units of shape 

information available in a representation, which is the type of information that 
the representation receives from earlier visual processes. For example, figure 2 

| 
V : g 
* . t . . .t .... ! t . t . . . 

D~ ~~~~ Li / / 9!f \ ~ 
* 

* > / 

~~....... !.......... .. .. .. .. ... .. .. .. 
.. 

FIGURE 2. A description of an object's shape has to be derived via a description of its visible 
surface, since the information encoded in images, for example by stereopsis, shading 
texture gradients, or occluding contours, is due to a shape's local surface properties. The 
objective of many early visual computations is to extract this information and we shall 
refer to the representation that makes it explicit as the 2-[D sketch. An example is shown 
here which provides information about the orientation (relative to the viewer) of small 
patches of surface spaced evenly over the visual field. The arrows depict the direction of 
steepest descent and its magnitude by their direction and length (the longer the arrow, the 
greater the dip of the surface element out of the image plane). The information carried by 
this representation's primitives is therefore specified by these arrows. 

illustrates an example of a representation whose primitives carry information about 
local surface orientation and distance (relative to the viewer) at thousands of evenly 
spaced locations in the visual field. We separate two aspects of a representation's 
primitives, the type of shape information they carry, which is important for 
questions of accessibility, and their size, which is important for questions of 
stability and sensitivity. 

There are two principal classes of shape primitive, surface-based (two-dimen- 
sional) and volumetric (three-dimensional). Surface information is more immedi- 
ately derivable from images. The simplest primitives useful for surface descriptions 
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2.5D Sketch

3D Model

Marr 1982



Code Switching

Computational operations 
can be: 

1. Within format
2. Across format

Memory
TemplateStimulus

matching

Within Format

Across Format

“Interface”

Marr 1982, Ullman 1996



Everyone’s Problem
Perception

“How does vision communicate with other modules 
in the brain?” (Cavanagh 2021)

Imagery: 

“[The mental imagery system has] to face the 
problem of providing a seamless interface between 
its form and the form used in reasoning, since both 
vision and imagery do play a role in reasoning.” 
(Pylyshyn 2003)

Language:

“all conditions are interface conditions; and a 
linguistic expression is the optimal realization of such 
interface conditions.” (Chomsky 1995)



Everyone’s Problem
How can a representation RA, in Format A, 
and a representation RB, in Format B, be 
related such that:
a) [Functional Coordination] RA can be 

part of a cause of RB, or vice versa, and
b) [Semantic Coordination] RA and RB are 

semantically related (e.g. one entails 
the other, makes the other more 
probable, they represent situations that 
are constitutively related, etc.)

?



Goals

1. What sort of explanatory costs are incurred when 
positing interfaces? Do they resist computational 
explanation? 

No.

2. What do such interfaces tend to have in common?
They are rarely translational.

3. A dilemma for the perception/cognition interface.



Do interfaces resist 
computational 
explanation?



Computing across the interface?
1) Translation: “for there to be reliably content-respecting causal processes 

linking intentions with motor representations there would have to be 
some process of translation.” (Butterfill and Sinigaglia 2014)
• “The heart of the problem… is one of translation: in order for us to talk about what 

we see, information provided by the visual system must be translated into a form 
compatible with the information used by the language system.” (Jackendoff 1987)

• “Part of the problem here is simply to understand how non-conceptual 
representations are ‘translated’ into conceptual representations.” (Heck 2007)

2) Ignorance: “The difficulty is that nothing at all is known about this 
hypothetical translation between intention and motor representation, 
nor about how it might be achieved, nor even about how it might be 
investigated.” 
• “Another shortcoming of amodal symbol systems is their failure to provide a 

satisfactory account of the transduction process that maps perceptual states into 
amodal symbols.” (Barsalou 1999)



Other Solutions

• Common Format or Interlingua (e.g. Ferretti and 
Caiani 2018, Quilty-Dunn, Porot, Mandelbaum 2023)
• But: Evidence for common formats is unclear.

• Mixed Format (e.g. Shepard 2019)
• But: What are the principles of composition and 

inference? How do we distinguish between mixed format 
and common format?

• Deference (e.g. Butterfill and Sinigaglia 2014)
• But: Deference either requires independent functional 

coordination (Evans, M&P) or permits the lack of 
functional coordination (Burge, Bach).



Reconsidering computation across 
the interface

1. Reject Translation
• Understood as informational equivalence—“mere 

recoding”.

2. Reject Ignorance
• We have models of many interfaces…

3. What do existing models of interface 
computations have in common?



Models of interfaces
A) Vision: Spots to Shapes



Spots to Local Orientation

• Retinal ganglion 
cells: light and dark 
contrast
• Ganglion cells 

converge onto 
simple cells in V1, 
which thereby 
respond to oriented 
patterns of contrast.

Hubel and Wiesel 1968



Orientation to Contour
The model recovers shape information in five stages: 

(1) contour information is recovered using oriented 
filters, 

(2) object center is recovered using higher-order 
filters that respond at the center of concentric 
contours (A),

(3) the number and average radii of objects is 
recovered using the contour energy in one 
direction from the object center,

(4) local curvature signals are recovered around the 
contour using a few curvature mechanisms 
tuned to different degrees of curvature (B), and

(5) shape is represented as curvature signal strength 
as a function of orientation around the object’s 
center.

in V4, inferotemporal neurons exhibit combined selectiv-
ity for curvature and orientation of contour fragments,
curvature tuning is signed (i.e. cells respond differentially
to convex and concave contours), and the representation
is biased towards higher curvature values [18,19].

Because curvature signals efficiently encode even larger
contour fragments that encompass multiple orientations,
they represent a further step towards compact object
representation. They also explicitly encode a fundamen-
tal aspect of shape that has strong perceptual valence for
human observers [20–23]. For example, a recent study
demonstrates that, contrary to standard theory, texture
boundaries do not depend exclusively on orientation
discontinuities: curvature discontinuities alone produce
striking texture boundaries, reflecting the strong repres-
entation of curvature at the neural level [24]. It has also
recently been shown that similar curvatures in close
spatial proximity interfere perceptually [25], consistent
with the idea of coarse basis-function coding of curvature
at the neural population level [26].

Structural representation in object-based
coordinates
Many theories of shape processing [27,28] are based on
the idea of structural representation — that is, shape
description in terms of object parts and their positional
and connectional relationships. Structural codes are com-
pact, because even complex shapes comprise a manage-
able number of parts. Structural codes are highly
generative, because even a limited basis set of different
elements can be combined in so many ways. Thus, a finite
number of neurons that encode object parts can represent
a virtual infinity of object shapes, in the same way that
just 26 letters of the alphabet can represent millions of
words. Explicit representation of object structure would
also explain our immediate cognitive access to infor-
mation about parts and their relationships: if asked to
describe an object, we usually talk about its parts and
how they are put together. Finally, structural representa-
tions could be more stable across changes in viewing
conditions. A key tenet of most structural theories is
that part relationships are represented in a spatial refer-
ence frame centered on the object itself. This would
require a major transformation of position information
from the original retinotopic reference frame, but it would
confer stability across changes in object position.
Additionally, stability across viewing distance could be
achieved if the reference frame scaled with object size,
and stability across viewing angle could be achieved if the
reference frame rotated with some definable axis in the
object itself.

Electrode recording experiments in the monkey ventral
pathway have yielded evidence of structural representa-
tion in an object-centered reference frame. V4 neurons
tuned for contour fragment orientation and curvature are
also strongly sensitive to the object-relative position of
contour fragments [19]. For example, a given V4 neuron
might respond to objects that have convex curvature at
the bottom right (e.g. a lowercase ‘b’) but not to those that
have convex curvature at the top right (e.g. a lowercase
‘p’). Structural coding in an object-based reference frame
is even more prominent at the next processing stage in
posterior IT, where neurons integrate information about
multiple contour fragments (typically 2–4) [17]. The
example cell in Figure 2a is sensitive to concavities
oriented towards the lower right and concavities oriented
towards the lower left. (This was determined by fitting
response functions across a large number of stimuli not
shown here.) As in V4, the same local contour information
evokes strong responses in a variety of global shape
contexts (top rows, Figure 2a). Also as in V4, responses
are acutely sensitive to object-relative position: the same
configuration of two concavities evokes little or no
response when it appears to the right of object center
rather than to the left (Figure 2a, bottom rows). In more
anterior parts of IT, sensitivity to object-relative position
seems to be organized at the columnar level [29!]. Most
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Figure 1

Transformation in the ventral pathway. The initial representation at the
retinal level of even a simple shape such as the letter ‘J’ is distributed
across many neurons. The shape information in this representation is
implicit (i.e. difficult to read or decode): it would take many
computational steps to determine that any given set of input values on
these retina-like 30 " 30 arrays (black/gray/white pixel pattern, left)
corresponds to a J. (Just looking at the pattern is cheating — you are
using the computational power of your own ventral visual pathway to do
the decoding.) Finally, the representation of a J at this level is extremely
variable: the set of active neurons changes completely depending on
size and position of the letter. Here, three different views are shown (left).
The ventral pathway must transform this abstruse representation into
one that is much more compact, explicit and stable. This figure
schematizes a transformation into a simple structural representation, in
which the J would be represented by just two activity peaks, one
corresponding to the vertical straight line at the top right and the other
corresponding to the curved horizontal line at the bottom. (The 3 " 3 grid
of panels represents object-centered position; curvature and orientation
are plotted recursively within this grid.) This review article discusses
recent evidence for structural coding and other transformation
processes that could lead to object representations that are compact,
explicit and stable enough to support our remarkable perceptual
capacities.

www.sciencedirect.com Current Opinion in Neurobiology 2007, 17:140–147

Connor, Brincat, and Pasupathy 2007

Data collected using RF patterns have provided insights
on the nature of intermediate-level shape processing. Here
we present a physiologically plausible model that replicates
important aspects of human radial frequency pattern
perception.

2. Model

2.1. Overview

The model presented here serves as an account of human
perception of shape in radial frequency patterns, including
conditions where additional masking contours were present-
ed inside and/or outside the test contour. The model recovers
shape information in five stages: (1) contour information is
recovered using oriented filters, (2) object center is recovered
using higher-order filters that respond at the center of con-
centric contours, (3) the number and average radii of objects
is recovered using the contour energy in one direction from
the object center, (4) local curvature signals are recovered
around the contour using a few curvature mechanisms tuned
to different degrees of curvature, and (5) shape is represented
as curvature signal strength as a function of orientation
around the object’s center.

Object center is recovered using a neural model previ-
ously used for concentric Glass patterns (Wilson & Wilkin-
son, 1998), corresponding to the first two stages of the
present model. In the 1st stage, the contour is filtered by
oriented receptive fields, and their outputs serve as input
to the 2nd, 3rd, and 4th stages. The 2nd stage consists of
a pair of filters oriented orthogonally to the 1st stage filters,
and offset symmetrically from the filter’s output position
along their axis of elongation. This configuration has been
shown to respond well to contour curvature (Wilson,
1999). The outputs of such filters are summed over a range
of orientations, giving an energy response in the center of
the stimulus, from which object position is recovered (see
Fig. 1A). In the 3rd stage of the model, objects are counted
by sampling oriented receptive field responses in a given
direction from the object center, giving a number of energy
spots equal to the number of objects present in that direc-
tion. Moreover, the position of these energy spots relative

to the object center may serve to position curvature
response sampling (see 5th stage below).

In the 4th stage of the model, curvature mechanisms
were modeled as a combination of responses of three ori-
ented filters arranged along a curved path. The response
is maximal if the contour passes through all three samples,
matching the curvature defined by the locations of the sam-
ples. The sampled responses were combined multiplicative-
ly using an ‘AND’ operator, providing a strong response
only if all three oriented filters sampled were responding
to the contour, and no response if one or two sampled fil-
ters were unresponsive. Opponent curvature mechanisms
were constructed by contrasting the response of similarly-
oriented curvature mechanisms tuned to increases and
decreases in curvature (see Fig. 1B).

In the 5th stage of the model, shape information is rep-
resented as curvature responses as a function of orientation
around the object center at a radius determined by the 3rd
stage, similar to population codes in V4 macaque monkey
cells (Pasupathy & Connor, 2002), from which shape infor-
mation can be derived independently of object position or
size.

Curvature mechanisms operate in parallel over the visu-
al field, encoding curvature for all orientations and a range
of curvature amplitudes. However, for the purpose of pro-
viding a plausible yet parsimonious model of radial fre-
quency pattern perception, we restrict our analysis to
opponent curvature mechanisms optimized to encode devi-
ations from circular shapes. Unpublished fMRI data from
our laboratory support the presence of neurons responding
optimally to deviations from circles in the human ventral
pathway (Rainville, Yurganov, & Wilson, 2005).

2.2. Stimuli

Radial frequency patterns are created by varying the
radius of a circle as a function of polar angle (h) using a
sum of sinusoid functions of various amplitudes, phases,
and frequencies (Wilkinson et al., 1998):
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Fig. 1. (A) Filters used in the computation of object center. Small scale oriented filters encode the contour, and orthogonal large scale filters positioned on
either side from the center encode occurrences of concentric line elements. (B) Filters used in the computation of local curvature. Maximum response
occurs when the contour passes through three oriented filters that are combined (multiplication shown here). Refer to the text and subsequent figures for
the dimensions of the filters used.

2444 F.J.A.M. Poirier, H.R. Wilson / Vision Research 46 (2006) 2443–2455

Poirier and Wilson 2007



Contour to Solid Shape
120 IRVING BIEDERMAN

Principle of Non-Accidentolness: Critical information is unlikely to be a
consequence of on accident of viewpoint.

Three Soace Inference from Imaae Features

Figure 4. Five nonaccidental relations. (From Figure 5.2, Perceptual
organization and visual recognition [p. 77] by David Lowe. Unpub-
lished doctorial dissertation, Stanford University. Adapted by permis-
sion.)

derivation of an axis of symmetry for the arrangement. King,
Meyer, Tangney, and Biederman (1976) demonstrated that a
perceptual bias toward symmetry contributed to apparent
shape constancy effects. Gamer (1974), Checkosky and Whit-
lock (1973), and Pomerantz (1978) provided ample evidence
that not only can symmetrical shapes be quickly discriminated
from asymmetrical stimuli, but that the degree of symmetry
was also a readily available perceptual distinction. Thus, stimuli
that were invariant under both reflection and 90° increments in
rotation could be rapidly discriminated from those that were
only invariant under reflection (Checkosky & Whitlock, 1973).

Cotermination. The "peephole perception" demonstrations,
such as the Ames chair (Ittleson, 1952) or the physical realiza-
tion of the "impossible" triangle (Penrose & Penrose, 1958),
are produced by accidental alignment of the ends of noncoter-
minous segments to produce—from one viewpoint only—L, Y,
and arrow vertices. More recently, Kanade (1981) has presented
a detailed analysis of an "accidental" chair of his own construc-
tion. The success of these demonstrations document the imme-
diate and compelling impact of cotermination.

The registration of cotermination is important for determin-
ing vertices, which provide information that can serve to distin-
guish the components. In fact, one theorist (Binford, 1981) has
suggested that the major function of eye movements is to deter-
mine coincidence of segments. "Coincidence" would include
not only cotermination of edges but the termination of one edge
on another, as with a T vertex. With polyhedra (volumes pro-
duced by planar surfaces), the Y, arrow, and L vertices allow

inference as to the identity of the volume in the image. For ex-
ample, the silhouette of a brick contains a series of six vertices,
which alternate between Ls and arrows, and an internal Y ver-
tex, as illustrated in Figure 5. The Y vertex is produced by the
cotermination of three segments, with none of the angles
greater than 180°. (An arrow vertex, also formed from the coter-
mination of three segments, contains an angle that exceeds
180°; an L vertex is formed by the cotermination of two seg-
ments.) As shown in Figure 5, this vertex is not present in com-
ponents that have curved cross sections, such as cylinders, and
thus can provide a distinctive cue for the cross-section edge.
(The curved Y vertex present in a cylinder can be distinguished
from the Y or arrow vertices in that the termination of one seg-
ment in the curved Y is tangent to the other segment [Chakra-
varty, 1979].)

Perkins (1983) has described a perceptual bias toward paral-
lelism in the interpretation of this vertex.4 Whether the pres-
ence of this particular internal vertex can facilitate the identifi-
cation of a brick versus a cylinder is not yet known, but a recent
study by Biederman and Blickle (1985), described below, dem-
onstrated that deletion of vertices adversely affected object rec-
ognition more than deletion of the same amount of contour at
midsegment.

The T vertex represents a special case in that it is not a locus
of cotermination (of two or more segments) but only the termi-
nation of one segment on another. Such vertices are important
for determining occlusion and thus segmentation (along with
concavities), in that the edge forming the (normally) vertical
segment of the T cannot be closer to the viewer than the segment
forming the top of the T (Binford, 1981). By this account, the
T vertex might have a somewhat different status than the Y,
arrow, and L vertices, in that the T's primary role would be
in segmentation, rather than in establishing the identity of the
volume.5

Vertices composed of three segments, such as the Y and ar-

4 When such vertices formed the central angle in a polyhedron, Per-
kins (1983) reported that the surfaces would almost always be inter-
preted as meeting at right angles, as long as none of the three angles was
less than 90°. Indeed, such vertices cannot be projections of acute angles
(Kanade, 1981) but the human appears insensitive to the possibility that
the vertices could have arisen from obtuse angles. If one of the angles in
the central Y vertex was acute, then the polyhedra would be interpreted
as irregular. Perkins found that subjects from rural areas of Botswana,
where there was a lower incidence of exposure to carpentered (right-
angled) environments, had an even stronger bias toward rectilinear in-
terpretations than did Westerners (Perkins & Deregowski, 1982).

5 The arrangement of vertices, particularly for polyhedra, offers con-
straints on "possible" interpretations of lines as convex, concave, or
occluding (e.g., Sugihara, 1984). In general, the constraints take the
form that a segment cannot change its interpretation, for example, from
concave to convex, unless it passes through a vertex. "Impossible" ob-
jects can be constructed from violations of this constraint (Waltz, 1975)
as well as from more general considerations (Sugihara, 1982, 1984). It
is tempting to consider that the visual system captures these constraints
in the way in which edges are grouped into objects, but the evidence
would seem to argue against such an interpretation. The impossibility
of most impossible objects is not immediately registered, but requires
scrutiny and thought before the inconsistency is detected. What this
means in the present context is that the visual system has a capacity for
classifying vertices locally, but no perceptual routines for determining
the global consistency of a set of vertices.
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Figure 2: Our model (MarrNet) has three major components: (a) 2.5D sketch estimation, (b) 3D
shape estimation, and (c) a loss function for reprojection consistency. MarrNet first recovers object
normal, depth, and silhouette images from an RGB image. It then regresses the 3D shape from the
2.5D sketches. In both steps, it uses an encoding-decoding network. It finally employs a reprojection
consistency loss to ensure the estimated 3D shape aligns with the 2.5D sketches. The entire framework
can be trained end-to-end.

Janner et al., 2017] with deep networks. Our method employs 2.5D estimation as a component, but
targets reconstructing full 3D shape of an object.

Single-Image 3D Reconstruction The problem of recovering object shape from a single image
is challenging, as it requires both powerful recognition systems and prior shape knowledge. With
the development of large-scale shape repository like ShapeNet [Chang et al., 2015], researchers
developed models encoding shape prior for this task [Girdhar et al., 2016, Choy et al., 2016, Tulsiani
et al., 2017, Wu et al., 2016b, Kar et al., 2015, Kanazawa et al., 2016, Soltani et al., 2017], with
extension to scenes [Song et al., 2017]. These methods typically regress a voxelized 3D shape
directly from an input image, and rely on synthetic data or 2D masks for training. In comparison, our
formulation tackles domain difference better, as it can be end-to-end fine-tuned on images without
any annotations.

2D-3D Consistency It is intuitive and practically helpful to constrain the reconstructed 3D shape
to be consistent with 2D observations. Researchers have explored this idea for decades [Lowe, 1987].
This idea is also widely used in 3D shape completion from depths or silhouettes [Firman et al.,
2016, Rock et al., 2015, Dai et al., 2017]. Recently, a few papers discussed enforcing differentiable
2D-3D constraints between shape and silhouettes, enabling joint training of deep networks for 3D
reconstruction [Wu et al., 2016a, Yan et al., 2016, Rezende et al., 2016, Tulsiani et al., 2017]. In our
paper, we exploit this idea to develop differentiable constraints on the consistency between various
2.5D sketches and 3D shape.

3 Approach

To recover the 3D structure from a single view RGB image, our MarrNet contains three parts: first, a
2.5D sketch estimator, which predicts the depth, surface normal, and silhouette images of the object
(Figure 2a); second, a 3D shape estimator, which infers 3D object shape using a voxel representation
(Figure 2b); third, a reprojection consistency function, enforcing the alignment between the estimated
3D structure and inferred 2.5D sketches (Figure 2c).

3.1 2.5D Sketch Estimation

The first component of our network (Figure 2a) takes a 2D RGB image as input, and predicts its 2.5D
sketch: surface normal, depth, and silhouette. The goal of the 2.5D sketch estimation step is to distill
intrinsic object properties from input images, while discarding properties that are non-essential for
the task of 3D reconstruction, such as object texture and lighting.

We use an encoder-decoder network architecture for 2.5D sketch estimation. Our encoder is a
ResNet-18 [He et al., 2015], encoding a 256⇥256 RGB image into 512 feature maps of size 8⇥8.

3

Biederman 1987 Wu et al. 2017
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Fig. 4.8 (a) 3D likelihood model, yielding (b) inflation of the skeleton into a 3D shape. (c) When
T-junctions and internal contours are included, the estimated skeleton can be non-planar

4.4 Discussion and Conclusion

We have described a principled probabilistic conception of shape representation,
which provides natural approaches to part decomposition, shape similarity, and fig-
ure/ground, and can be extended in a conceptually simple way to 3D. The main
idea is to view contour elements as data generated by a skeletal growth process, and
then estimate the structure of the skeleton. The best representation of a shape is the
skeleton that best explains it; the similarity of two shapes is the degree to which one
shape’s skeletal interpretation explains the other shape; and the best interpretation
of multiple shapes is the collection of skeletons that best explains the ensemble of
contours, thus inducing estimates of f/g and depth relations.

Many aspects of our framework are present in other approaches, including
stochastic estimation of skeletal structure [47, 53], belief propagation for f/g [51],
and inflation of 2D skeletal representations into 3D shape [48]. But the main at-
traction of our approach is its simplicity, comprehensiveness, and coherence: all
the applications derive from the central conception of shape as a rational inference
problem. Broadly speaking, the aim is to make some assumptions about shape-
generating processes in the environment; express these assumptions as a probability
model; and estimate the model. As mentioned, the probability model can then be
tuned to natural shape statistics, used to model shape similarity, extended to multi-
ple shapes in a way that yields f/g estimates and depth relations, and easily extended
to 3D. None of these extensions require elaborate new hacks, nor indeed any change
to the basic principles. The psychological literature attests a wealth of connections
among these different aspects of perceptual organization, and we would argue that
our approach integrates them in a way that properly respects their interconnections.

It is important to understand that our approach does not intrinsically require me-
diality; axial forms are simply a reasonable model for many natural shapes. For oth-

Feldman, Singh, Briscoe 2013

Natural Constraints
Generative Model

DCNNs



Visual Interfaces, In General
The visual hierarchy contains a series of interfaces. 

• Functional coordination: 
• Certain transitions are primitive operations.

• Mechanistic explanation @ neurobiological level (inhibition and excitation).

• Ecological explanation: These operations reflect natural constraints and/or 
conditional probabilities

• Structure-sensitive: correspondence between combinatorial features in 
different formats
• E.g. skeletal structure of 3D representation depends on vertex-structure in the 

contour representation.

• Adaptable (modulated by attention, expectation)



Visual Interfaces, In General

• Semantic coordination: 
• Meta-semantics: The contents of the basic representations depend on 

• functional relationships between those basic constituents and other 
representations (functional coordination), and

• The relationships between the representations and the environment. 
• Anti-individualism; not deference or demonstration.

• Compositionality: contents of complex representations (in either 
format) constitutively depend on the contents and relations between 
their basic constituents

• Mere recoding is rare: Transitions across formats in the visual 
hierarchy are typically ampliative.



Models of interfaces
B) Oculomotor Control

Target Selection
(FEF)Task Set

(PFC)

Salience Map
(PPC)

look
away



Eye Movements

• “Saccade”: a quick, jerky eye movement from one 
fixation point to another.



Eye Movements

Schall 2002: “we know more about and 
have easier access to every stage of the 
production of visually guided eye 
movements than we do for limb or vocal 
movements. 

Several lines of evidence indicate that 
the knowledge gained about the 
cognitive control of eye movements can 
generalize to other systems and more 
complex behaviors…

the most general aspects of the 
voluntary control of behavior seem to be 
independent of effector.”



Reflexive Saccades

• Motor goal is represented in multiple 
formats, 
• Visual representations (3D, eye-

centered, object-centered)
• Salience map (PPC) à Saccade 

command (superior colliculus): 2D, eye-
centered 

• Eye motor program (brainstem): 3D, 
head-centered vector

• Head motor program (brainstem): 3D, 
shoulder-centered vector

Fixate at (n,m)

Salience Map Saccade Command

Motor Programs
Perceptual

Representation

Sajad, Sadeh, Daemi and Crawford 2015, Crawford 2020



Intentional Eye Movements

While often reflexive, 
saccades sometimes are 
intentional actions.

• No-Go: Don’t Look! 
• Anti-saccade: Look 

away!

• Planning: Look there first, 
then there, then there.

Schall, Palmeri, Logan 2017, Munoz and Everling 2004, Zingale and Kowler 1987



Biased Competition Model

Miller and Cohen 2001, Heinzle, Hepp and Martin 2007, Wiecki and Frank 2013, Schall 2013, Lo and Wang 2016, Buehler 2021

Target Selection
(FEF)Task Set

(PFC)

Salience Map
(PPC)

look
away

Default: Look Task: Look away

Target Selection
(FEF)Task Set

(PFC)

Salience Map
(PPC)

look
away



Structure Matters
• Format of task representations (PFC)

• Compound task rules and abstract task 
sequences are represented 
compositionally 

• abstract from visual and motor details.

• Sequencing of motor goals (FEF, SC) 
depends on structured task rules and 
planning.

• Control is modulated as a function of 
error, reward, and conflict (SEF, ACC).

a b

Task

Phase 1 Phase 2

Rule 1
If S1 then A

Rule 2 & Rule 3

Rule 1
If S2 then B

Rule 2
If S3 then C

s1 s2
Error, 

reward, 
conflict

Fuji and Greybiel 2003, Sakai 2008, Sigala 2008, Reverberi, Görgen, and Haynes 2012



The Oculomotor Interface
• Functional coordination: 

• Basic task representations (“look 
away”) modulate visuomotor 
mappings (vector inversion) 

• Structure-sensitive: sequencing 
and selection of saccade goals 
sensitive to complex task 
representation.

• Adaptable: selection of saccade 
goal is sensitive to error, reward, 
conflict.

a b
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Rule 1
If S1 then A

Rule 2 & Rule 3

Rule 1
If S2 then B

Rule 2
If S3 then C

s1 s2
Error, 

reward, 
conflict



The Oculomotor Interface
• Semantic coordination: 

• Meta-semantics: Content of basic 
task rep constitutively depends on

a) The visuomotor mappings that it 
modulates, and

b) The environmental patterns that 
reinforce the modulatory 
connections.

• Compositionality: Complex task 
reps composed from more basic 
task reps.

a b

Task

Phase 1 Phase 2

Rule 1
If S1 then A

Rule 2 & Rule 3

Rule 1
If S2 then B

Rule 2
If S3 then C

s1 s2
Error, 

reward, 
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Properties of Interfaces



Common Properties of Interfaces
• Functional coordination

• At basic level, primitive operations--innately specified, or acquired and updated 
through learning.

• Structure-sensitive.
• Often adaptable/modulated across contexts

• Semantic coordination
• Semantic coordination between basic atoms and structural features in Format A 

and those in Format B is explained meta-semantically.
• …Given this, semantic coordination between complex representations is 

explained compositionally.
• Information equivalence (mere recoding) is rare. The brain abhors redundancy.



Is this really an “explanation”?
• Why does it feel like every proposal ”begs the question”?

• E.g., in response to M&P: “one wonders how, after all, action concepts and motor 
schemata non-accidentally link up in action control” (Shepard 2017).

• In many proposals, the bridge across the interface seems just to be association
(possibly with fancy things on either side).

• Any account (even of a single format) will have to posit primitive 
operations (Block 1983), for which
• Functional coordination does not have a further functional analysis at 

psychological level,
• And semantic coordination can only be explained meta-semantically.

• But, not the end of the story: structure-sensitive and adaptable, and so 
non-trivial at psychological level.



A dilemma for 
conceptualization



A dilemma for conceptualization
• Typically understand as (selective) translation of perceptual representation 

into propositional format
• “every concept in a perceptual belief conceptualizes a perceptual attributive in 

the underlying perceptual state…. Every conceptual attributive in a perceptual 
belief must have a counterpart perceptual attributive in the perceptual state from 
which the belief (and the conceptual attributive) is formed. The concept must 
indicate and attribute the same attribute that the perceptual attributive does…” 
(Burge 2020).

• “A minimal perceptual judgment conceptualizes each representational aspect of 
a perception and no more” (Block 2023).

• Dilemma: either
• The perceptual-conceptual interface is akin to others and skews toward non-

translational, ampliative transitions (Westfall 2020).
• Or this interface is special, which calls for explanation.



In sum

1. What sort of explanatory costs are incurred when 
positing interfaces? Do they resist computational 
explanation? 

No.

2. What do such interfaces tend to have in common?
They are rarely translational.

3. A dilemma for the perception/cognition interface.



Thanks!
Kevin Lande

Department of Philosophy / Centre for Vision Research
York University

lande@yorku.ca / www.kevinlande.com

SCAN FOR SLIDES

mailto:lande@yorku.ca
http://www.kevinlande.com/

