
Compositionality in Perception: A Framework 
Kevin J. Lande 

Department of Philosophy & Centre for Vision Research 
York University 

 
Abstract: Perception involves the processing of content or information about the world. In what form is this 
content represented? I argue that perception is widely compositional. The perceptual system represents many 
stimulus features (including shape, orientation, and motion) in terms of arrangements of other features (shape 
parts, slant and tilt, grouped and residual motion vectors). But compositionality can take a variety of forms. The 
ways in which perceptual representations compose are markedly different from the ways in which sentences or 
thoughts are thought to be composed. Throughout, I suggest that the thesis that perception is compositional is 
not itself a concrete hypothesis with specific predictions, but rather it affords a framework for developing and 
evaluating empirical hypotheses about the nature of perceptual representations. The question is not just whether 
perception is compositional, but how. Answering this latter question can provide fundamental insights into the 
place of perception within the mind. 
 

1. INTRODUCTION 

One of the great challenges of modern science is to understand the immense creative powers of thought and 

language—our abilities to produce, understand, and communicate a seemingly infinite variety of spontaneous 

thoughts and plans, which can be arbitrarily unmoored from present concerns and circumstances. But impressive 

too is the immense receptivity of the mind to the immediate conditions in which it finds itself. One is capable of 

perceptually representing patterns that one has never encountered before––endlessly variable arrangements of 

figures, of different shapes, sizes, and textures, changing and interacting over time. One can at once perceptually 

distinguish these patterns while also being sensitive to their similarities. How does the mind administer such a 

finely differentiated yet well-catalogued repertoire of representations?  

The creativity of thought and language is thought to be powered by the capacity for composition—roughly, 

the ability to represent something (that Ida loves Una) by combining more elementary representations (of Ida, 

Una, and loving). Is the receptivity of perception also rooted in the power of compositionality? Many philosophers 

have thought that the compositional powers of language or thought are primary and make possible our abilities to 

distinguish and represent objective patterns in the world. One possibility is that perception itself wholly lacks 

compositional structure. Perception without thought is blind; a blooming, buzzing confusion of unstructured 

information (Dretske, 1981). Another possibility is that insofar as there is compositionality in perception, it will 

be similar in form to the type of compositionality that resides in language and thought (McDowell, 1996). This 

might be the case if the role of compositionality in perception is to encode perceptual content in a format that is 

readable by cognition (Cavanagh, 2021; Quilty-Dunn et al., 2022). These possibilities have corollaries in 

contemporary deep neural network models of vision, where it sometimes happens that either the representations 
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of a network are high-dimensional vectors with uninterpretable bases or that what structure they have is impressed 

on them by the task of assigning conceptual labels or descriptions. 

I will argue that perception is compositional in its own right. The compositionality of perception is implicit 

in a wide variety of theories in perception science. David Marr once characterized perceptual representations as 

constituting a “formal scheme,” comprising a set of elementary representations and “rules for putting them 

together” (Marr, 1982, p. 21), with Stephen Palmer writing that “perceptual representations are selectively 

organized data structures” (Palmer, 1977, p. 442). But compositionality can come in a variety of forms. I argue 

that compositionality in perception is quite unlike the compositionality that is thought to characterize language 

and thought. An underlying moral is that the thesis that perception is compositional is not itself a concrete 

hypothesis that makes specific predictions. Instead, compositionality, like Bayesianism (Knill et al., 1996; 

Griffiths et al., 2012) or neuroconnectionism (Doerig et al., 2023), should be construed as a theoretical framework 

for posing and answering empirical questions about the nature of perceptual representations. The question is not 

simply whether perception is compositional, but how. Answering this latter question provides special insights into 

the place of perception within the mind. 

2. What is compositionality? 

When one asks about the “composition” of a photograph, a novel, or a mathematical function, one is asking how 

one thing depends for certain of its properties on the way it is combined from its parts and certain of their 

properties. The relevant notions of “thing,” “part,” and “combination” can vary depending on the subject matter 

(a rock song and the temporal arrangement of its musical phrases vs. a sample of rock and its physical aggregation 

of constituent minerals), as can the relevant properties (one can ask about a sculpture’s aesthetic composition or 

its chemical composition). Semantic compositionality is specific to representations—roughly, things (sentences, 

maps, pictures) or psychological states (perceptions, memories, thoughts) that matter in large part because of what 

they are about. A newspaper headline is a representation: it may be written in a visually striking font, but critically 

it also has content about some world event. Your visual state is also a representation: it might correspond to 

relative influx of oxygen to certain parts of your brain, but critically it also carries content about the shape, 

orientation, and motion of the object that is spinning past you.  

Some representations, such as the newspaper headline, have other representations (words) as parts. Visual 

representations, I will argue, also have parts. Semantic compositionality concerns the relationship between what 

a whole representation is about and what its parts are about. The concept of a semantically compositional 
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representation has its origins in philosophy of language, logic, and linguistics, where it is typically traced back to 

the work of Gottlob Frege. It is standardly defined as follows (Partee, 2004; Janssen, 2011): 

Compositional Representation: A representation is compositional if and only if its content depends wholly 

on the contents of its constituent parts and the way they are structurally combined. 

For example, the phrase “red balloon” is a compositional expression. We can characterize the meaning of the 

phrase by noting that it is true of anything that is both red and a balloon. It applies to just these things because (i) 

“red balloon” is a combination of an adjective “red” and a noun “balloon,” (ii) “red” is true of anything that is red 

and “balloon” refers to the set of things that are balloons, and (iii) in the standard case, a combination of an 

adjective, A, and a noun, N, is true of anything that is a member of the set designated by N and of which A is true. 

More generally, if a representation is compositional, then one can exhaustively characterize its content (what it is 

about) by answering what I will call the “Three Cs”: 

The Three Cs: 

(1) What are the elementary, or primitive, constituents of the representation? 

(2) In what way are the constituents structurally combined? 

(3) How does the content of a representation depend on the contents of its constituents, given the manner in 

which they are combined? 

We can also pose the Three Cs for a system as a whole, which is tantamount to asking about the system’s 

“lexicon,” its “syntax,” and its “compositional semantics,” respectively. A set of representations is a compositional 

system just in case each structured representation in the system is compositional and, moreover, there are common 

principles—answers to the Three Cs—that determine the contents of multiple representations in the system. For 

example, “white rabbit,” “square hat,” and “litigious pony” are all governed by the A-N principle. 

“Content,” “constituent part,” and “structural combination” all refer to theoretical concepts. While theorists 

differ in how they understand and even label these concepts, most agree on some core points. First, an essential 

feature of a representation is that it has the function of being about something. The “content” of a representation–

–as with the content of a newspaper headline––determines what it is about. The content of the sentence “Ida loves 

Una” is about Ida’s loving Una; the content of the monkey’s current visual state is about (among other things) the 

estimated orientation of the target Gabor patch.  

Second, just as chemical laws determine what molecules are structurally possible, psychological constraints 

determine what representations are structurally possible. “Ida loves Una” is a possible sentence in my idiolect 
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because it has the right kind of constituents, combined in the right kind of way. “Ida Una balloon luft” doesn’t, 

and so isn’t a possible sentence in my idiolect (though it is physically possible for me to pronounce and perceive 

it). A theory of representational structure (a “grammar”) aims to explain what representations are possible in a 

system—and therefore available for computing or inferring with—in terms of how representations can, cannot, or 

must combine to be constituents of a common, composite representation (a data structure, if you like). A theory 

of representational content (“semantics”) aims to explain what those representations are about (Lande, 2023; 

Larson & Segal, 1995). In a compositional system, the same principles that delimit which representations are 

possible also delimit what those representations are about.  

That a system is compositional is not a concrete hypothesis that makes specific empirical predictions. It is a 

theoretical framework for formulating such hypotheses. To hypothesize that a system is compositional is simply 

to say that the space of its representations can be spanned by filling in the Three Cs. Predictions are made when 

one hypothesizes specific values for these parameters. Still, it is an empirical question whether the framework is 

feasible. Filling in the Three Cs is no trivial task and it is not self-evident that it will always prove to be a 

productive endeavour. Prior to the research programs championed by Noam Chomsky and Richard Montague, 

many doubted that meaning in natural language could be explained in terms of the Three Cs. Many still doubt it. 

The claim that thought is compositional has proven to be controversial (Fodor, 1975; Quilty-Dunn et al., 2022). 

Many have especially doubted the compositionality of psychological capacities outside of language and thought. 

3. Compositionality in vision 

 

Figure 1: Vision is compositional. A spinning object moving through the scene is represented in terms of (among other things) its shape, 3D 
orientation, and motion, which themselves are represented, respectively, in terms of configurations of shape parts, slant and tilt, and the 
boundary’s rotational motion around the object’s centre with the linear motion of the object’s centre. 

Vision is compositional. Vision science contains a host of hypotheses about how one type of stimulus feature is 

represented “in terms of” other features. These constitute hypotheses about how one representation is composed 

of others (Figure 1). Here are some examples: 
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§ A representation of a surface’s orientation in depth is composed from representations of its slant and tilt  

(Stevens, 1983; Nguyenkim & DeAngelis, 2003). 

§ A representation of an element’s motion (e.g. the trajectory of part of a wheel rolling across the ground) 

is composed from a representation of the common motion that it shares with other elements (the linear 

motion of the wheel’s centre) and a representation of the element’s residual motion (its rotation about 

the centre; Johansson, 1973; Gershman et al., 2016). 

§ A representation of visual texture is composed from representations of summary statistics of luminance, 

orientation, and so on (Portilla & Simoncelli, 2000; Balas et al., 2009). 

§ A representation of an object’s orientation relative to an extrinsic object (e.g. the orientation of my pen 

on the notepad) is composed from representations of “(a) a correspondence between object axes and 

external axes, (b) the tilt of the object axes relative to the external axes, and (c) the relationship between 

the polarity of the object axes and the polarity of the external axes” (McCloskey et al., 2006, p. 685). 

§ A representation of an object is composed from representations of features––including its orientation, 

motion, texture, etc.—perhaps with a separate “index” for the object that is invariant across feature 

changes (A. Treisman, 1986; Pylyshyn, 1989; Kahneman et al., 1992; Green & Quilty-Dunn, 2017). 

§ A representation of a scene is composed from representations of objects and their relations (Biederman 

et al., 1982; Zhu & Mumford, 2006; Võ, 2021; Hafri & Firestone, 2021); or from representations of 

summary statistics of features, e.g. the mean depths of surfaces within the scene (Greene & Oliva, 2009). 

Even if none of these hypotheses is exactly right, that they all presuppose compositionality suggests that this is a 

productive framework for zeroing in on the truth.  

3.1 Compositionality in Shape Perception  

Compositionality has played an especially central role in approaches to one of the fundamental problems in vision 

science: how humans and primates represent shape. Since the representation of three-dimensional shape has 

proven to be elusive to model, researchers have often focused on the more constrained problem of how we 

represent the two-dimensional outlines of things (Elder, 2018; Todd & Petrov, 2022). Many approaches to this 

problem hinge on how they answer the Three Cs (Figure 2; Table 1). 
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Figure 2: Different models of compositional representations of two-dimensional shape. Dashed lines indicate constituency. Solid lines 
indicate structural relationships between constituents, i.e. the “manner in which they are combined” (e.g., that one representation precedes 
another within an ordered sequence). Some constituents are taken to be feature-vectors that decompose into component coordinates, 
representing orientation, location, size, etc. See Table 1 for corresponding combinatorial constraints and their semantic import. A-D are 
part-based schemes. A: An edge code, in which shape representations are composed from an ordered sequence of representations of local 
oriented line segments (Elder & Goldberg, 2002; Geisler & Super, 2000). B: A convexity code, in which shapes are represented in terms of 
convex segments of their contour (Hoffman & Richards, 1984; Richards & Hoffman, 1985; Schmidtmann et al., 2015). C: A constant 
curvature code, in which shapes are represented in terms of segments of constant curvature, or “arclets” (N. Baker et al., 2020; N. Baker & 
Kellman, 2021; Kellman et al., 2013). D: A medial axis code, in which a shape is represented in terms of local axes of symmetry, which are 
related as principal and branching axes (Blum & Nagel, 1978; Feldman & Singh, 2006; Feldman et al., 2013; Green, 2023). E-F are 
transformational schemes. E: Shock grammars represent shapes in terms of a hierarchical tree of expansions, contractions, collisions, and 
mergings of symmetric shapes (Siddiqi & Kimia, 1996; Kimia, 2003) [Adapted from (Siddiqi et al., 1999, p. 26) with kind permission from 
Springer]. F: A formlet scheme takes shapes to be coded in terms of sequences of warping transformations applied to an embryonic 
template shape (Elder et al., 2013) [Adapted from (Elder et al., 2013, p. 5) with kind permission from Elsevier]. [Thanks to Nick Baker for 
assistance with the figure.] 

 

System 1. Constituents 2. Combination 3. Content 
A. Edge code Representations of oriented 

edges, composed from 
representations of 
– Orientation 
– Location 
– Size 

– Form: Constituents are arranged in an 
ordered sequence (or cycle).  
– Constraint: Adjacent constituents must 
satisfy good continuation and proximity. 

A shape that has each 
represented edge as a part, such 
that adjacent constituents 
represent neighbouring, 
approximately collinear edges. 

B. Convexity code Representations of contour 
segments, composed from 
representations of 
– Orientation 
– Aspect ratio 
– Skew 
– Size 

– Form: Ordered sequence.  
– Constraint: Good continuation and 
proximity. 

A shape that has each 
represented segment as a part 
along with smooth connections 
between those segments, such 
that adjacent constituents 
represent neighbouring convex 
parts. 

C. Constant 
curvature code 

Arc-units, composed from 
representations of 
– Curvature 
– Object-centred location 
– Arc-length 

– Form: Ordered sequence.  
– Constraint: Good continuation and 
proximity. 

A shape that has each 
represented segment as a part, 
such that adjacent constituents 
represent neighbouring, 
approximately collinear parts. 

D. Medial axis code Local axes of symmetry, 
composed of a series of points 
related by turning angles. 

– Form: Hierarchical. 
– Smoothness Constraint: The shallower 
the turning angle between represented 
points, the more the representations of 
those points can be combined into an axis 
representation. 
– Simplicity Constraint: There is a fixed 
cost to adding constituents. Structures 
with fewer constituents are better than 
structures with more constituents. 

The main axis represents the 
global shape and branching 
axes represent component 
regions of the shape, such for 
each axis there is a region in 
the shape that is approximately 
symmetric about that axis.  
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E. Shock grammar Representatiosn of shock types, 
corresponding to different 
ways symmetric shapes might 
expand, collide, merge, or 
collapse.  

– Form: Hierarchical. 
– Constraint: A set of production rules 
constraining the possible combinations 
and orderings of shocks.  

A shape that results from the 
hierarchical ordering of 
represented shocks.  

F. Formlet code – Embryos, i.e. representations 
of basic template shapes. 
– Formlets, i.e. representations 
of localized warping 
transformations. 

– Form: Ordered sequence. 
– Constraint: Initial element is an 
embryo. Subsequent elements are 
formlets (in any arbitrary sequence).   

A shape that results from the 
sequential application of 
warping transformations to the 
represented embryonic shape. 

Table 1: Compositional schemes for representing shape differ in (1) what they take to be the constituents of shape representations, (2) how 
those constituents can be combined (including their form, or the type of structural relations they stand in when combined, and the 
constraints they must satisfy to stand in those relations), and (3) how the content of the whole shape representation is derived from the 
contents of its constituents and their manner of combination. See Figure 2 for illustrations of these different schemes. 

3.1.1 Contour Parts 

“Part-based” accounts hold that the representation of a shape is composed from constituent representations of 

parts of that shape and their configuration. According to one family of theories (Figure 2A-C; Table 1A-C), the 

relevant shape-parts are segments along the object’s contour. Some models take the constituents to be 

representations of local oriented edges (Geisler et al., 2001; Elder & Goldberg, 2002). Most take the constituents 

to be representations of curved segments, whether just the convex segments or bumps (Hoffman & Richards, 

1984; Richards & Hoffman, 1985; De Winter & Wagemans, 2006; Schmidtmann et al., 2015; Figure 1B); or the 

concavities (dents) and sides as well (Bell et al., 2010); or segments of constant curvature (Kellman et al., 2013; 

N. Baker et al., 2020; N. Baker & Kellman, 2021; Figure 1C). These part-representations themselves decompose 

further into coordinates on dimensions of curvature, orientation, size, and so on.  

Many contour-based schemes assume that shape representations have the form of ordered sequences (or 

cycles, in the case of closed figures) in which one part-representation is structurally adjacent to another (Elder & 

Goldberg, 2002; Figure 2A-C; Table 1A-C). Standardly, whether two representations can combine as adjacent 

constituents is a function of whether they represent segments as having positions and orientations that are 

relatively collinear and nearby (Field et al., 1993; Boucart et al., 1994; Elder, 2018; Kellman & Fuchser, 2023). 

That is, the principle of combination reflects the Gestalt rule of “good continuation” (Lande, 2021). 

If two part-representations are structurally adjacent, this signifies that the represented parts are topologically 

adjacent and more or less well-aligned. So, the constituents contribute content about the parts of the shape (their 

curvature, orientation, and so on), and the structural relationship between the constituents (the manner in which 

they are combined) contributes content about the configuration of those parts. 

3.1.2 Medial Axes 
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Hafri et al. (2023) have recently proffered another part-based scheme, medial axis representations, as an example 

par excellence of compositional perceptual representation. Your palm and your fingers are each locally symmetric 

about their own axes. A medial axis representation of the shape of your hand is composed from representations 

of these different axes (Blum, 1973; Feldman & Singh, 2006; Feldman et al., 2013; Green, 2023; Figure 2D; Table 

1D). The axis representations are related hierarchically, with a main axis that captures the main body of the shape 

(your palm) and branch axes for the parts (fingers). An axis might itself be coded as a sequence of points (Feldman 

et al., 2013, p. 57). A smoothness constraint entails that an axis representation is more likely to decompose into a 

collinear set of points (related by shallower turning angles) than a ragged or twisty set of points. A simplicity 

constraint entails that there is a fixed cost to adding axes to a shape representation. The constituents of a medial 

axis representation carry content about the local axes around which parts of the shape are symmetrical; the way 

those constituents are combined contributes content about the topological relationships among those parts. 

3.1.3 Transformational Models  

Not all theories take shape representations to be part-based. Two examples are “shock grammars” (Siddiqi & 

Kimia, 1996; Figure 2E; Table 1E), which are closely related to medial axis representations, and “formlets” (Elder 

et al., 2013; Figure 2F; Table 1F). In these schemes, constituents represent distinct stages in some abstract 

evolution of the shape. In a shock grammar, a shape is represented in terms of a hierarchy of operations of growth, 

contraction, collision, and mergings of shapes. The representations of these operations are combined according to 

grammar-like production rules. In a formlet system, a shape representation has the form of an ordered sequence, 

where an initial constituent represents an embryonic shape such as an ellipse and other constituents represent 

spatial warping functions. In either case, the representation is a composite data structure that specifies each of the 

relevant shape transformations, and which represents the shape that would be generated from the actual realization 

of those transformations in the relevant order. 

3.2 Diagnosing Structure 

There is broad, tacit consensus about how to empirically evaluate hypotheses about each of the Three Cs. I focus 

here on evaluating claims about constituency and combination. The experimental logic for tests of constituency 

and combinability rest on a few defeasible principles (Lande, 2021; Schwartz & Sanchez Giraldo, 2017): 

(1) A representation’s constituents are necessary for forming that representation. 

Without the parts, you can’t have the whole. So, as Schwartz and Sanchez Giraldo write, “Coarsely, if some 

aspect of a task (e.g., adaptation or forgetting) affects the activity of a representational unit, then it will affect 
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decisions, storage, and recall of all aspects of the input that share this representational unit either directly, or 

through the hierarchical construction of a representation” (Schwartz & Sanchez Giraldo, 2017, p. 6). Hence, a 

count against an “oriented edge” code (Figure 2A) is that local edge information can be substantially varied 

without variation in the overall shape representation (Boucart et al., 1994; N. Baker & Kellman, 2018). By 

contrast, when curvature information is masked, this substantially impacts shape representation (Biederman & 

Cooper, 1991; De Winter & Wagemans, 2006; Habak et al., 2004; Bell et al., 2010; Schmidtmann et al., 2015). 

This suggests that even if edges are cues to shape, shape is coded in terms of curvature.     

(2) Distinct constituents are approximately conditionally independent of each other, given that they belong 

to the same representation.  

If different parts receive different representations, then one should be able to introduce internal or external 

noise to the representation of one part without thereby inducing variability in the representation of the others 

(Garner, 1974; Bell et al., 2009; Denisova et al., 2016). Conversely, the same constituent can be preserved 

(“reused”) despite variation in the other constituents with which it is combined (Palmer, 1977; Ankrum & Palmer, 

1991). To be clear, one shouldn’t expect perfect or absolute independence. One of the strengths of the 

compositional framework is that one can express interdependencies, or co-determination, among constituents 

(Zhu & Mumford, 2006; Schwartz & Sanchez Giraldo, 2017). If good continuation is a constraint on the 

combinability of two contour representations, then the visual system might be biased toward representing one 

contour’s orientation as more collinear to the others so that their representations can be combined (Keemink & 

van Rossum, 2016; Schwartz et al., 2009). But the represented orientations are approximately independent if we 

conditionalize on their being encoded by parts of an integrated representation. 

While much of the focus in vision science is on identifying the distinct constituents of a representation (the 

first C), it is just as important to spell out the constraints on how constituents can combine (the second C). 

(3) Combinatorial constraints determine which representations are possible in the system as a function of 

how those constituents are related. 

For example, if good continuation is a constraint on combining contours, then without any good continuation at 

any spatial scale, you won’t be able to represent an integrated contour (Field et al., 1993; Lande, 2021). 

Conversely, one’s theory should not “over-generate” representations: if all the combinatorial constraints in your 

model allow a given representation, then it should be possible in principle to induce that representation in subjects 

(notwithstanding limits on memory, attention, and so on).  
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Compositionality provides an effective and tractable framework for formulating and testing hypotheses about 

the way content is encoded in vision. This is good reason to think that vision is compositional. Still, the framework 

and its experimental logic are often only implicit in vision research. Making these explicit might encourage more 

systematic and consistent development, testing, and comparison of models.  

4. DOES VISION HAVE A LANGUAGE? 

Some hold that insofar as perceptual representations are compositional, they have a similar form as representations 

in cognition and language. Indeed, it is sometimes suggested that perceptual representations have a “grammar” 

(Gregory, 1970; Võ, 2021) or “logic” (Rock, 1985), that they are like “descriptions” (Hummel, 2013) with “logical 

predicates” (Feldman, 1997), or that there is a “language of vision” (Cavanagh, 2021). On the weak interpretation, 

the claim is simply that perceptual representations are compositional. But as Elisabeth Camp (2007) points out, 

this does not imply a stronger interpretation that the syntax and semantics of perception are substantially like that 

of language or thought. In fact, there seem to be marked differences. 

As Hafri et al. (2023) and Lande (2023) have noted, perception lacks the expressive power of cognition. 

Consider the “lexicon” of constituents available in perception. There is no evidence for explicit representations of 

logical relations (not, or, if…then…) in perception (Block, 2023, ch. 3). Moreover, many categories of words and 

concepts are open class—you can endlessly expand your stock of nouns and verbs, thing-concepts and property-

concepts. Correspondingly, there are few constraints on what a noun (or thing-concept) can represent: a person, a 

transfinite cardinal, or a weather event. By contrast, the dimensions along which we can perceptually represent 

things (shape, texture, and so on) are arguably quite fixed (Green, 2020).  

These differences in the constituents available to perception and language correspond to differences in the 

ways those constituents can combine. Nouns with quite different meanings can be interchanged within a sentence 

without threatening its grammaticality (“Ida loves [Una / aleph-null / the weather]”). This pattern of 

intersubstitutability defines the syntactic role of nouns. There is much less freedom for substitution between 

perceptual representations. For example, Green and Quilty-Dunn (2017) argue that object files have “feature-

specific slots”: they can be composed from a limited number of shape representations, a limited number of 

orientation representations, and so on. Shapes can be swapped for shapes and orientations for orientations; but 

shapes cannot enter into the orientation slot or vice versa (see also Ashby, 2020). The compositional roles of 

perceptual representations are much finer-grained than those of nouns and adjectives, say. 

The grammar of language permits us to express unexpected and even contradictory claims. This incurs the 

risk of saying and thinking highly inaccurate things, but it also enables us to state and argue for deep and surprising 
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insights—that the apple and the moon are governed by the same laws of motion, or that there are infinitely many 

prime numbers. Perception is notably more conservative. It is unlikely that the motion of the moon across the sky 

and the motion of the apple falling to the ground would ever be grouped together visually. Likewise, the sorts of 

contours that can be represented given the combinatorial constraint of good continuation are just the sorts of 

contours that tend to arise in natural scenes (Geisler et al., 2001; Elder & Goldberg, 2002). In language, well-

formedness guarantees neither plausibility nor even meaningfulness. In perception, the combinability of 

representations tends to track the likelihood that the compound representation would be accurate. 

One motivation for thinking that compositionality in perception would be like compositionality in cognition 

is the idea that compositional representations are a way of packaging perceptual content into a format that is 

readable by language and thought (Cavanagh, 2021; Quilty-Dunn et al., 2022). But we have seen that 

compositionality is posited throughout vision, not just at its interface with cognition. The constituents of 

orientation, texture, motion, and shape representations may be far removed from the kinds of features we tend to 

talk about and think about when describing our visual world. Moreover, the compositional principles of perception 

seem to subserve a central function of perception itself: to accurately represent the distal causes of sensory 

stimulations (Helmholtz, 1925; Knill et al., 1996; Graham, 2014). The perceptual code ensures that the hypothesis 

space of perception is well-fitted to its ecological niche, containing hypotheses only insofar as they are plausible 

given the laws and regularities by which distal objects cause proximal sensations. No such constraints bind the 

hypothesis space of thought. The compositional principles governing perception may in some cases serve to 

facilitate the interface with language and thought; but in many cases they may be better understood as subserving 

endogenous functions of perception itself. 

5. WHAT COMPOSITIONALITY IS NOT 

It remains to dispel some potential confusion about what compositionality in perception entails. In perceptual 

psychology and computer vision, the term “compositional representation” is often taken as synonymous with 

“part-based representation,” whereby something is represented in terms of its parts and their relationships. But 

semantically compositional representations need not strictly be part-based. The phrase, “The 16th President of the 

United States,” is a compositional representation of Abraham Lincoln; but the constituent, “the United States,” 

does not represent a literal part of Abraham Lincoln (Block, 1983). Visual representations of texture are 

semantically compositional, but their constituents represent the statistics of a texture rather than its individual 

parts (Balas et al., 2009). Transformational models of shape perception represent shapes in terms of 
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transformations that would produce the shape, rather than parts of the shape itself. If some perceptual 

representations are in fact part-based, then this is a substantive fact about the way they are compositional. 

Talk of “combination” and “composition” might encourage a picture of processing, according to which the 

constituents are formed first and then put together (A. M. Treisman & Gelade, 1980). But compositionality does 

not require an assembly line. Many compositional theories of vision posit an “analysis-by-synthesis” architecture 

in which representations are refined through the convergence of bottom-up cues and prior expectations (Yuille & 

Kersten, 2006). By analogy, that the human body is composed of limbs and other body parts does not mean that 

those parts were pre-fabricated and then assembled like building blocks. Moreover, while we can expect attention 

and memory to be able to operate on the constituents of a compositional representation, there is no requirement 

that they must always do so. Recognitional processes, for example, need not match each constituent of  a visual 

representation to a representation in memory (Barenholtz & Tarr, 2006). Semantic compositionality is a feature 

of representations; it is consistent with different ways in which those representations might be formed and used 

(Lande, 2021).  

Finally, it is helpful to distinguish psychological (or cognitive) representation from neural representation. 

Psychological representations are typically posited as elements of models that explain psychophysical patterns in 

how individuals experience and behaviorally respond to stimuli (Palmer, 1978; Burge, 2014). Neural 

representations are patterns of neural activity that are investigated through various neuroscientific probes, such as 

neuroimaging and extracellular recordings (Cao, 2022). A central task of cognitive neuroscience is to validate 

“linking hypotheses” that relate the sorts of representations posited in psychological models to the sorts of 

representations probed in neuroscience (Teller, 1984; Shea, 2018; B. Baker et al., 2022). In the case of 

compositionality, these linking hypotheses might be straightforward—for example, associating distinct 

psychological constituents with distinct cells or neural ensembles (Vaziri et al., 2009). But the links might be 

more obscure. Likewise, while some deep neural network models of vision seem to eschew compositionality, 

structural diagnostics, of the sort canvassed above, can be applied to neural networks, possibly providing evidence 

of representations with compositional structure like that diagnosed in primate vision or in human language 

(Zerroug et al., 2022; Hupkes et al., 2020). It is a matter of active investigation what properties of neural networks 

might give rise to such structure. In any case, uncertainty about either biological or computational linking 

hypotheses does not invalidate the existing psychophysical methods for evaluating hypotheses about the structures 

of psychological representations. Indeed, such methods are critical for validating candidate linking hypotheses. 

Conclusion 
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Perception involves encoding content or information about the world. In what form is this content represented? I 

have argued that perception is compositional: in many cases, the content of a perceptual representation depends 

wholly on the contents of its constituents and the manner in which they are combined. Vision science contains 

manifold models of how shape, orientation, motion, and other aspects of a scene are “coded in terms of” various 

features. These models explain the space of possible representations in a system by answering the Three Cs: what 

are the constituents, how can they combine, and what is the semantic import of combining them that way? 

Compositionality provides a productive framework for understanding perceptual representation. While I think 

compositionality is pervasive in perception, that does not mean that it is universal. It is a live question how many 

perceptual capacities are compositional and, for any given capacity, how it is compositional. 

I close by highlighting three principal conclusions. First, the view that there is no compositionality in 

perception does not sit well with much of contemporary perception science. Second, compositional 

representations in perception are markedly different than those in cognition. Structured representations in 

perception do not simply sit at the interface with cognition, serving to relay messages in a format readable to it. 

The form in which perceptual content is represented supports perception’s own proprietary ends. Finally, I have 

stressed that the thesis that perception is compositional does not constitute a concrete hypothesis with specific 

empirical predictions. It instead offers a theoretical framework for posing and answering empirical questions about 

the nature of representations in a system. While that framework could in principle turn out to be a dead end, it 

currently supports live and productive programs of research. Fundamental insights arise within that framework, 

when one asks not just whether perception is compositional, but how. 
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